Wireless systems

- how radio works
- radio spectrum allocation
- examples
 - cell phones
 - 802.11 (WiFi)
 - Bluetooth
 - GPS
 - RFID: prox, E-ZPass, store tags, passports, ...
 - ...
- tradeoffs
 - spectrum, power, range, size, weight, mobility
- non-technical issues
 - regulation, competition, ...
Radio

- electromagnetic radiation to carry information
 - without wires => "wireless"

- radiation is a wave of a particular frequency (in Hz)

- "modulate" the wave to impose information on it
 - amplitude (AM): change the power level
 - frequency (FM): change the frequency around nominal value
 - digital: on/off
 - ...

- received signal strength varies directly with power level

- received signal strength dies off with square of distance

- higher frequencies go shorter distances
Cell phones 101

- all phones are part of the public switched telephone network
- a cell phone is connected by radio instead of wires
- moves long distances, at high speed, appears out of nowhere
- shares a very limited radio frequency spectrum with others
- operates with low power because it uses batteries
- this makes life complicated
Cells (a very idealized picture)

- divide geographical area into cells (notionally hexagonal)
- each cell has an antenna, handles all cell phones in its area
- available radio spectrum is divided into channels
 - two channels for one conversation, one for each direction
 - competing carriers operate on different frequencies
- each cell gets 1/7 of the channels
 - adjacent cells can't use the same channels because of interference
 - non-adjacent cells can re-use channels

from www.howstuffworks.com
How it works

- when a phone is turned on, it broadcasts its ID ("registration")
 - nearest base station notices, validates with home system
 registration uses encryption for fraud prevention
 - phone keeps broadcasting enough to keep in touch
- when the phone is called, the home system knows where it is
 - home system contacts base(s) where phone is
 - bases broadcast to where phone was last seen ("paging")
- phones talk to base with strongest signal
 - base and phone communicate over 2 agreed-upon channels (up, down)
 - phones continuously adjust power level to signal strength at base
 uses less battery, creates less interference for other phones
- phones move from base to base and from system to system
 - base initiates handoff when signal gets weak
 - phone picked up by base with strongest signal
 - elaborate protocols at all levels
How it works, continued

• **multiple frequency bands** (different in different parts of the world)
 - divided into channels (frequency multiplexing)
 digital phones multiplex several calls on one channel (GSM)
 or spread calls out over the whole spectrum (CDMA)
 - phones usually support multiple bands

• **channels carry both voice and control information** (including data)
 - digital speech is highly compressed (~1 bit/speech sample)
 - elaborate coding & error correction for speech & control information
 - power turned off when nothing is being sent

• **phones store user info on removable flash memory card**
 - SIM (Subscriber Information Module)
 - may be able to replace card to use in a different environment

• **most of the world uses GSM**
 - in USA, AT&T & T-Mobile use GSM; Verizon & Sprint use CDMA
Technology meets politics again

• should texting while driving be illegal (and enforced)?
 - how about just talking on a phone while driving?

• where determines where cell phone towers are permitted?
 - property rights versus eminent domain

• should cell phone jammers be legalized?
 - in theatres, trains, etc.

• location tracking and surveillance
 - FCC mandates that cell phone can be locatable within 125 meter radius
 - should real-time location info be available to law enforcement, etc.?
 - how should this evolve as GPS becomes universally available?
 - who can have access to what cell phone records under what circumstances?
GPS (Global Positioning System)

- 31 satellites, each broadcasting time & its location
 - altitude ~ 20 km, frequency ~ 1575 MHz
 - at least 6 are visible at any time

- receiver calculates its position using distances to 3 or more satellites
 - distances computed by careful measurement of time
 - accuracy typically within 15 m for civilian systems
 - additional inputs or use of encrypted info reduces this to < 1 m
Search engines

- browser uses a FORM
to send a query to a server
 - e.g., google.com
- server runs a program to extract query from form
- finds pages that contains word(s) of query
- generates HTML
- returns page to client

- server needs to know what pages contain relevant words
- continuously crawls the web collecting pages
- builds big database that tells what pages contain any given word

- basic problem: scale
 - lots of pages, lots of words, lots of queries
Server processes

- 3 basic processes going on in parallel
 - respond to incoming queries by looking up words in database
 - crawl web looking for new pages
 - extract words from new pages and insert into database
Fetching new pages

- start with a list of likely URLs
- fetch data from next URL from the list
 - obey robot exclusion standard
- extract parts to be indexed, deliver to index builder
- extract URLs
- delete duplicate URLs (ones seen recently)
- delete irrelevant ones (advertisements, …)
- add remaining URLs to end of list
- go back to the top

questions:
- how to start
- how to detect duplicates quickly
- what to preserve (text, .html files, .txt files, PDF, gif/jpg, …)
- how to avoid overloading big/popular sites
Building and searching an index

• for a new page that has just been fetched:
 - isolate words (discard HTML tags, etc.)
 - handle upper and lower case, accents, punctuation,
 other languages and character sets, ...
 - for each word
 add URL to list for that word
 add word position within the page to the list for the URL

• to look up a single word query:
 - go to the list for the word
 - collect all URLs
 - sort them into order by weighting function
 importance, frequency, ...

• queries with multiple words:
 - collect URL lists, combine them, weight them
Ranking search results

• how to get the most likely results on the first page (at the top)
 - most people look only at the first few results
 - need for very high precision (relevant documents in the top 10 or so)

• Google uses proprietary "page rank" algorithm based on link structure of web
 - pages that are cited often move higher
 - pages that are cited by higher ranked sites move higher
 - anchor () text gives more information
 - proximity of search terms within page
 - ...

• other search engines have analogous techniques

• have to defend against attempts to inflate rankings
Privacy and copyright issues

- what privacy standards apply to search engines?
 - how can private / incorrect information be purged?
 - right to be forgotten?

- search engines versus government
 - should search engines release information about dissidents to the local government?
 - should search engines suppress / restrict query results if requested by government?
 - can query logs be subpoenaed?

 AOL's release of "sanitized" information permitted identification of individuals from their queries

- copyright
 - Viacom v YouTube: vicarious liability or DMCA safe harbor?
 - should newspaper stories be indexed without permission?

- trademarks
 - can someone buy someone else's trademark as an advertising keyword?
 e.g., could Microsoft buy "iPad"

- ...
Hardware

- logical/functional/architectural structure
 - bus connects CPU, RAM, disks, other devices
 - caching
 - CPU cycle: fetch-decode-execute; kinds of instructions
 - toy machine as an example
 - different processor families are incompatible at the instruction level
 - von Neumann: architecture; Turing: equivalence of all machines

- physical implementation; sizes and capacities
 - chips; Moore's law, exponential growth

- analog vs digital

- representation of information
 - bits, bytes, numbers, characters, instructions
 - powers of 2; binary and hexadecimal numbers
 - interpretation determined by context

- it's all bits at the bottom
Software

- **algorithms**: sequence of defined steps that eventually stops
 - complexity: how number of steps is related to amount of data
 - linear: searching, counting, ...
 - quadratic: simple sorting
 - logarithmic: binary search (logarithm = number of bits needed to store)
 - $n \log n$: quicksort
 - exponential: towers of Hanoi, traveling salesman problem, ...

- **programs and programming languages**:
 - evolution, language levels: machine, assembly, higher-level
 - translation/compilation; interpretation
 - a program can simulate a machine or another program

- **basic programming**, enough to figure out what some code is doing
 - variables, constants, expressions, statements, loops & branches (if-else, while), functions, libraries, components

- **operating systems**: run programs, manage file system & devices
 - file systems: logical: directories and files; physical: disk blocks

- **application programs**, interfaces to operating system
Communications

- local area networks, Ethernet, wireless, broadcast media
- Internet: IP addresses, names & DNS, routing; packets
 - bandwidth
- protocols: IP, TCP, higher-level; layering
 - synthesis of reliable services out of unreliable ones
- Web: URLs, HTTP, HTML, browser
 - caching
- security & privacy: viruses, cookies, spyware, ...
 - active content: Javascript, plugins, addons

- cryptography
 - secret key; public key; digital signatures; secure hashes
- compression; error detection & correction

- case studies and the real world
 - prox cards, peer to peer, cell phones, search engines, ...
Real world issues

• legal
 - intellectual property: patents, copyrights, contracts, licenses
 - jurisdiction, especially international

• social
 - privacy, security

• economic
 - open source vs proprietary
 - who owns what

• political
 - policy issues
 - balancing individual, commercial and societal rights and concerns