Compression; Error detection & correction

• **compression**: squeeze out redundancy
 - to use less memory or use less network bandwidth
 - encode the same information in fewer bits
 • some bits carry no information
 • some bits can be computed or inferred from others
 • some bits don't matter to the recipient and can be dropped entirely

• **error detection & correction**: add redundancy
 - to detect and fix up loss or damage
 - add carefully defined, systematic redundancy
 - with enough of the right redundancy,
 can detect damaged bits
 can correct errors
Compressing English text

• letters do not occur equally often
• encode frequent letters with fewer bits, less frequent things with more bits (trades complexity against space)
 - e.g., Morse code, Huffman code, ...

• run-length encoding
 - encode runs of identical things with a count
 - e.g., World Wide Web Consortium => WWWC => W3C

• words do not occur equally often
• encode whole words, not just letters
 - e.g., abbreviations for frequent words
Lempel-Ziv coding; adaptive compression algorithms

- build a dictionary of recently occurring data
- replace subsequent occurrences by (shorter) reference to the dictionary entry
- dictionary adapts as more input is seen
 - compression adapts to properties of particular input
 - algorithm is independent of nature of input
- dictionary is included in the compressed data

- Lempel-Ziv is the basis of PKZip, Winzip, gzip, GIF
 - compresses Bible from 4.1 MB to 1.2 MB (typical for text)

- Lempel-Ziv is a lossless compression scheme
 - compression followed by decompression reproduces the input exactly

- lossy compression: may do better if can discard some information
 - commonly used for pictures, sounds, movies
JPEG (Joint Photographic Experts Group) picture compression

- a lossy compression scheme, based on how our eyes work
- digitize picture into pixels
- discard some color information (use fewer distinct colors)
 - eye is less sensitive to color variation than brightness
- discard some fine detail
 - decompressed image is not quite as sharp as original
- discard some fine gradations of color and brightness

- use Huffman code, run-length encoding, etc., to compress resulting stream of numeric values

- compression is usually 10:1 to 20:1 for pictures
- used in web pages, digital cameras, ...
MPEG (Moving Picture Experts Group) movie compression

- MPEG-2: lossy compression scheme, based on human perceptions
- uses JPEG for individual frames (spatial redundancy)
- adds compression of temporal redundancy
 - look at image in blocks
 - if a block hasn't changed, just transmit that fact, not the content
 - if a block has moved, transmit amount of motion
 - motion prediction (encode expected differences plus correction)
 - separate moving parts from static background
 - ...
- used in DVD, high-definition TV, digital camcorders, video games
- rate is 3–15 Mbps depending on size, frame rate
 - 15 Mbps ~ 2 MB/sec or 120 MB/min ~ 100x worse than MP3
 - 3 Mbps ~ 25 MB/min; cf DVD 25 MB/min ~ 3000 MB for 2 hours
 - regular TV is ~ 15 Mbps, HDTV ~ 60–80 Mbps
MPEG-2 factoids

• for digital TV, DVDs, not HDTV
• 50-60 frames/sec, interlaced or progressive
• lots of patents for components (20+ companies)
 - royalties have to be paid for both encoders and decoders
• CD 650 MB 780 nm infrared laser
• DVD 4.7 GB single layer, 8.5 double layer 650 nm red laser)

• HDTV, HD DVD, Blu-ray
• HD DVD 3.5x DVD capacity (blue laser 400 nm)
 - 15, 30, 50 GB in 3 densities
• Blu-ray slightly more dense
 - 25, 50 GB single double
• HDTV has to match encoded resolution and screen resolution
 - 1280x720, 1366x768, 1920x1080, all 16:9 aspect ratio
MP3 (MPEG Audio Layer-3) sound compression

- movies have sound as well as motion; this is the audio part
- 3 levels, with increasing compression, increasing complexity
- based on "perceptual noise shaping":
 - use characteristics of the human ear to compress better:
 - human ear can't hear some sounds (e.g., very high frequencies)
 - human ear hears some sounds better than others
 - louder sounds mask softer sounds
- break sound into different frequency bands
- encode each band separately
- encode 2 stereo channels as 1 plus difference
- gives about 10:1 compression over CD-quality audio
 - 1 MB/minute instead of 10 MB/minute
 - can trade quality against compression

- see http://www.oreilly.com/catalog/mp3/chapter/ch02.html
Summary of compression

• **eliminate / reduce redundancy**
 - more frequent things encoded with fewer bits
 - use a dictionary of encoded things, and refer to it (Lempel-Ziv)
 - encode repetitions with a count

• **not everything can be compressed**
 - something will be bigger

• **lossless vs lossy compression**
 - lossy discards something that is not needed by recipient

• **tradeoffs**
 - encoding time and complexity vs decoding time and complexity
 - encoding is usually slower and more complicated (done once)
 - parameters in lossy compressions
 - size, speed, quality
Error detection and correction

- systematic use of redundancy to defend against errors

- some common numbers have no redundancy
 - and thus can't detect when an error might have occurred
 - e.g., SSN -- any 9-digit number is potentially valid

- if some extra data is added or if some possible values are excluded, this can be used to detect and even correct errors

- common examples include
 - ATM & credit card numbers
 - ISBN for books
 - bar codes for products
ATM card checksum

- credit card / ATM card checksum:
 - starting at rightmost digit:
 - multiply digit alternately by 1 or 2
 - if result is > 9 subtract 9
 - add the resulting digits
 - sum should be divisible by 10

 e.g., 12345678 is invalid
 8 + (14-9) + 6 + (10-9) + 4 + 6 + 2 + 2 = 34
 but 42345678 is valid
 8 + (14-9) + 6 + (10-9) + 4 + 6 + 2 + 8 = 40

- defends against transpositions and many single digit errors
 - these are the most common errors
Parity & other binary codes

- parity bit: use one extra bit so total number of 1-bits is even
 - $0110100 \Rightarrow 01101001$
 - $0110101 \Rightarrow 01101010$
 - detects any single-bit error

- more elaborate codes can detect and even correct errors

- basic idea is to add extra bits systematically so that legal values are uniformly spread out, so any small error converts a legal value into an illegal one
 - some schemes correct random isolated errors
 - some schemes correct bursts of errors (used in CD-ROM and DVD)

- no error correcting code can detect/correct all errors
 - a big enough error can convert one legal pattern into another one