
OpenRadio: A Programmable Wireless Dataplane

Manu Bansal, Jeffrey Mehlman, Sachin Katti, Philip Levis
Stanford University

{manub, jmehlman, skatti}@stanford.edu, pal@cs.stanford.edu

Abstract
We present OpenRadio, a novel design for a programmable wire-
less dataplane that provides modular and declarative programming
interfaces across the entire wireless stack. Our key conceptual con-
tribution is a principled refactoring of wireless protocols into pro-
cessing and decision planes. The processing plane includes di-
rected graphs of algorithmic actions (eg. 54Mbps OFDM WiFi
or special encoding for video). The decision plane contains the
logic which dictates which directed graph is used for a particular
packet (eg. picking between data and video graphs). The decou-
pling provides a declarative interface to program the platform while
hiding all underlying complexity of execution. An operator only
expresses decision plane rules and corresponding processing plane
action graphs to assemble a protocol. The scoped interface allows
us to build a dataplane that arguably provides the right tradeoff be-
tween performance and flexibility. Our current system is capable
of realizing modern wireless protocols (WiFi, LTE) on off-the-shelf
DSP chips while providing flexibility to modify the PHY and MAC
layers to implement protocol optimizations.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion

General Terms
Design, Management, Performance

Keywords
Programmable, Infrastructure, Dataplane, Wireless

1. INTRODUCTION
Wireless protocols evolve continuously. For example, 3GPP (the

standards body responsible for specifying the LTE cellular stan-
dard) expects to release major updates to the basic LTE standard
once every 18 months, and minor updates continuously. Even within

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

a deployed operational network, operators and vendors need to con-
tinuously optimize the network to handle problems such as inter-
cell interference, new traffic classes such as video and so on. For
example, operators need to implement management mechanisms
that dynamically adjust spectrum and power allocation at neigh-
boring basestations at a fine-grained subcarrier level on timescales
of hundreds of milliseconds to ensure that mobile handsets at the
edge of both cell-sites are not adversely affected. Similarly, to cope
with the growing popularity of video over spectrum starved cellular
networks, operators would prefer to use a PHY layer optimization
such as unequal error protection (UEP) - where certain frames (I-
frames) are better protected than others (P- or B-frames) [15][25] -
that can deliver much higher video quality while using lesser spec-
tral resources. Similar protocol changes and optimizations abound
(some more examples are discussed in Sec. 2) that are beneficial to
implement for a variety of reasons.

The wireless infrastructure is expected to support such evolvabil-
ity. In the past, such changes typically required replacing the bases-
tations, since the protocol definition was closely coupled with the
hardware in the form of specific ASICs designed for each protocol.
Such an approach worked fine when protocol upgrades were rela-
tively slow (several years) and basestations were deployed sparsely
and covered large areas. However, in current networks, protocol
changes are continuous (once every few months) and networks are
dense (e.g. one basestation per block in urban areas) to provide
high capacity and uniform coverage. Physically and frequently up-
grading the basestations for such dense networks is prohibitively
expensive.

In this paper, we argue that wireless infrastructure needs a pro-
grammable dataplane to support such evolvability. Specifically, the
basestations should be remotely programmable to enable vendors
and operators to upgrade and optimize the network completely in
software. To build such functionality, we present OpenRadio, a
novel design for a programmable wireless network dataplane. Built
around a commodity multi-core hardware platform, the core com-
ponent of OpenRadio is a software abstraction layer that exposes a
modular and declarative interface to program the PHY (baseband)
and MAC layers. An operator describes a protocol by defining rules
to match subsets of traffic streams and specifying actions to process
them. Rules are logical predicates on parameters of packets such as
header fields, received signal strength, channel frequency and other
fields that may be programmed. Actions describe behavior such as
encoding/decoding of data and scheduling of traffic on the channel.

OpenRadio’s design makes two contributions. First, it decouples
wireless protocol definition from the hardware, even while ensuring
that commodity multi-core platforms can be used for implementing
the protocols. Such decoupling is feasible because we can identify
low-level atomic building blocks in wireless protocols at the PHY

109

and MAC layers that are shared across different protocols (differ-
ent versions of LTE 4G, 3G, WiFi and so on). Further, OpenRadio
shows that commodity multi-core platforms are capable of execut-
ing such atomic blocks efficiently. Consequently, defining and cus-
tomizing protocol definition programmatically is feasible, as long
as modular abstractions exist to re-program individual protocol el-
ements.

OpenRadio’s second contribution is the design of this software
abstraction layer that exposes a modular and declarative interface
to program wireless protocols. The key idea is a principled de-
composition of wireless protocols into separate processing and de-
cision plane components with a simple, well-understood API be-
tween them. This decomposition is the main enabler of an efficient
implementation of a flexible and modular wireless programming
interface. The processing plane includes actions: operations that
only involve data-manipulation on packet data but no branching
logic. The decision plane includes rules: all decision logic that
picks sequences of operations to transform data stream subsets.
Such decomposition lends itself to efficient real-time implementa-
tion on commodity digital signal processors (DSPs) that are widely
available from a number of chip vendors [26, 12, 9, 14].

OpenRadio can be used to specify both the underlying proto-
cols as well as optimizations. For example, a rule for WiFi would
require all received packets matching the 6Mbps data rate in the
PHY header to be processed with the action of BPSK demodula-
tion. Protocol optimizations can be expressed by adding rules and
actions to an existing definition. For video delivery, an operator us-
ing OpenRadio might optimize for this class of traffic by inserting
a new rule to match all video packets (based on a header field). The
rule would require them to be processed through a special action
of UEP (en)decoding. The UEP (en)decoder action would also be
programmed by the operator as an atomic block. Meanwhile, the
existing standard WiFi-data handling remains untouched.

More generally, our longer-term goal is to design a programmable
wireless dataplane that includes the basestations, backhaul network
switches/routers and gateways to realize a software defined cellu-
lar infrastructure. Our goal in this paper, however, is more mod-
est. It is to discuss the design of a programmable basestation that
forms one (albeit important) component of this infrastructure. At
this stage, we have a prototype implementation of OpenRadio that
supports the WiFi PHY on off-the-shelf multicore DSP proces-
sors from TI [26]. The platform is capable of fully processing
the WiFi PHY protocol in software running at the highest speeds
(upto 108Mbps) and meeting all protocol deadlines. We pick WiFi
for proof-of-concept since its processing requirements are the most
stringent due to wide-bandwidth, multi-carrier modulation and random-
access deadlines on the order of microseconds. We plan to add sup-
port for LTE in the near future, as well as leverage the dataplane to
start researching the design of a control plane for cellular SDN in-
frastructure.

In the following section, we discuss more specific examples of
the kinds of protocol changes that operators would want to imple-
ment in their networks remotely, and that OpenRadio’s design sup-
ports.

2. USE CASES
Programmable basestations for cellular infrastructure are being

increasingly favored over fixed-function hardware as exemplified
by offerings of "software-upgradable" platforms for HSPA/WCD-
MA/LTE from some of the top vendors [23, 3]. Still, many de-
sirable features either remain hard to program or are simply not
possible to implement. A well-designed programmable dataplane

can enable these features. Let us consider some specific use-cases
to gain insight into the kind of programmability required.

2.1 Cell-size based optimization
OFDMA leads to power-amplifier (PA) inefficiencies due to a

high peak-to-average-power ratio (PAPR) as compared to single-
carrier modulation. This lead to the choice of SC-FDMA for LTE
(Rel 8/9) uplink to save user equipment (UE) power. However, ad-
vances in PA technology have now led to the adoption of OFDMA
(Rel 10) in favor of higher spectral efficiency. This is especially
true for small-cells where the UE needs to transmit at a lower power
than a macro-cell. The switch from SC-FDMA to OFDMA effec-
tively involves toggling a DFT block on the PHY signal chain. Def-
initions of individual processing blocks remain unchanged.

Another cell-size based optimization could involve picking the
right FFT size to balance multipath effects against PAPR ineffi-
ciencies. A higher FFT size leads to better multipath resiliency but
a higher PAPR value which is less energy efficient. A smaller cell
can use a smaller FFT size for the same data delivery performance
since it suffers less multipath fading and delay spread. Similar FFT
size adaptation based on link length can also benefit WiFi. The FFT
processing block only needs to be configurable in FFT size without
any changes in the algorithm.

2.2 Co-existence of heterogeneous cells
Cellular networks are rapidly becoming heterogeneous in cell

size with deployment of small-cells. Femto-cells enhance cover-
age in a small area such as a home but generally provide access to
a closed group of subscribers. However, deployment in the same
frequency as the containing macro-cell can cause strong interfer-
ence to external users in the same region. This has led to tech-
niques like Almost Blank Subframes (ABS) [6] that co-ordinate
the use of time-frequency resource elements between the two cells
to avoid interference. Such co-ordination can be implemented with
programmability in the MAC scheduler that decides whether or not
to use a resource element at any given time.

2.3 Application-specific wireless service
A promising feature of LTE is multiple service profiles [4] with

varying throughput and latency characteristics. The intent of the
QoS profiles is to provide customized network service to diverse
applications. However, the standard only specifies profile param-
eters while leaving the mechanisms open to implementation. A
programmable dataplane provides the vehicle necessary to imple-
ment various profiles and allowing their extension to new applica-
tion classes. Different processing chains can be tied to different
traffic classes. Prioritization, scheduling of traffic and error recov-
ery mechanisms can also be programmed according to application
needs. Those features can also evolve with new applications such
as public safety networks, urban sensing and media broadcast in
addition to classic voice, video and data delivery. A programmable
dataplane can similarly facilitate implementation of QoS features
for WiFi, WiMAX, White-space networking etc.

2.4 Evolving standards
Cellular wireless standards have been upgrading every couple of

years [1, 2]. Users are ready to consume network upgrades at an
even faster pace with an average UE lifespan of 18 months [10].
Yet, standards take a decade or more to reach their peak market
share [11]. Arguably, the biggest impediment to evolution of the
infrastructure is its inability to be programmed in-place and incre-
mentally.

110

Wireless networks are already operating with very high spectral
efficiency (within ≈ 20% of capacity limits). Consequently, signal
processing motifs are stabilizing with little room for improvement.
Moreover, cellular networks are designed such that most intelli-
gence is place in the infrastructure while keeping UEs simple. This
allows a bigger playing fields on the base-station side that is still
interoperable with existing users. Most gains are to be had by op-
timizing networks according to the operational scenario and load
patterns, which tend to be very diverse [11]. At the same time,
the set of users is always a rich mix of capabilities as new stan-
dards take long to penetrate. The ideal base-station must be able to
cater to all of them simultaneously. OpenRadio provides a platform
where new protocols and features can be "plugged-in" seamlessly.
Its programmable dataplane provides flexibility in selection, con-
figuration and arrangement of data processing motifs to compose
protocols optimized to the operational scenario.

3. DESIGN GOALS
Our goal is to design a programmable wireless dataplane with a

modular interface that can provide both the performance and flexi-
bility necessary for implementing a wide class of modern wireless
protocols and their optimizations.

As a performance benchmark, the platform must be capable of
processing a bandwidth of at least 20MHz for OFDM-complexity
protocols, including but not limited to IEEE 802.11 WiFi, IEEE
802.16 WiMAX and 3GPP LTE-Advanced. The platform must
provide enough computation throughput for these applications as
well as the processing latency requirements associated with spe-
cific protocols. In the case of WiFi, the most challenging deadline
is an ACK-turnaround time of 25µs for every successfully decoded
data packet.

Flexibility is a more qualitative characteristic than performance.
Our design goal is to provision the system to allow a smooth trade-
off between performance and deviation from the standard configu-
ration. Small variations in behavior should be enabled with little or
no performance loss. For example, a version of WiFi optimized for
video delivery using UEP only requires a change in the encoding
of I- and B-/P-frame bits into a packet of the PHY layer. All other
operations are preserved. Consequently, the platform must be able
to deliver near-WiFi computation performance for video-WiFi. At
the same time, the platform should not preclude more significant
changes from being realized at all.

An equally important design goal is making the OpenRadio plat-
form easy to program. The system must provide modularity such
that the involvement of a programmer is limited to only the af-
fected components of the protocol. Adapting a WiFi implemen-
tation to video-WiFi should not require the operator to modify or
even understand the OFDM (de)modulator or the CRC implemen-
tation. Without such modularity, the utility of a flexible dataplane
will be far from practical.

4. PROGRAMMING ABSTRACTIONS
The OpenRadio dataplane design provides a network substrate

that can be programmed using a modular, declarative interface,
provides high performance capable of supporting the highest rate
modern wireless protocols, and can be built using commodity DSP
silicon. In this section, we describe its declarative interface.

4.1 Modular declarative interface
OpenRadio’s dataplane enables the network operator to declar-

atively program the network stack for specific traffic subsets. He
only specifies what packet processing behavior he expects from the

network for different traffic classes. However, the operator does not
need to specify how the packet processing behavior is integrated
into an operational network and realized in practice. This low-level
complexity is abstracted out by the interface.

OpenRadio’s declarative interface is built on a principled refac-
toring of decision and processing paths in wireless protocols. Specif-
ically, we observe that protocols can be finely partitioned into two
separate parts: processing blocks which specify how a protocol
transforms analog waveforms into bits, and decision logic which
specifies when different processing transformations are used. For
example, the 54Mbps OFDM decoding sequence of 802.11g is a
processing specification, while interpreting the signal field of the
802.11 PHY layer control header to determine that the payload will
be at 54Mbps is a decision specification.

The processing plane encapsulates the series of signal processing
algorithms used in a PHY processing chain where each module cor-
responds to a single algorithm. For example, the processing plane
will have modules for FFT, 64-QAM mapping and slicing, con-
volutional encoding, Viterbi decoding, etc. These modules corre-
spond to blocks in a signal processing chain. The decision plane
encapsulates all the decision logic functionality. It is responsible
for selecting processing plane blocks to be used for encoding or de-
coding a packet. For example, the decision plane logic for 802.11g
will appropriately configure and stitch the processing plane plane
blocks to decode a 54Mbps packet without needing to touch any
block internals. Similarly, a protocol modification that rearranges
the same signal processing blocks would only need to modify the
decision plane, leaving the processing plane blocks untouched. As
another example, LTE changes the way packets are processed on
the downlink and uplink. It uses standard multicarrier OFDM for
the downlink, while it uses a modified single carrier modulation
(SC-FDM) for uplink to conserve mobile client batteries [5]. The
details of the signal processing algorithms are unimportant, but the
main take-away is that both OFDM and SC-FDM are simply differ-
ent ways of configuring and stitching basic signal processing blocks
such as FFTs, channel decoders and slicers. The decision plane can
simply specify such re-configurations and re-arrangements to real-
ize different protocol optimizations.

The two key choices - granularity of processing plane blocks and
decoupling decision plane logic from the processing plane - are
directly motivated by the goal of modular programmability. De-
coupling allows logical changes and rearrangement of signal pro-
cessing blocks to be limited to the decision plane without requiring
any understanding of the processing plane. Reconfiguring the be-
havior of a processing plane block limits changes to the specific
block without affecting other blocks or the decision plane. Adding
a new block (eg. a new channel encoder or decoder optimized for
video) is similarly a contained effort. The level of abstraction of
processing plane blocks (eg. FFT vs. low level instructions such
as complex multiply and accumulate) is high enough to allow most
programmability to be expressed declaratively and allows conve-
nient reuse of code. The imperative part is abstracted out in pro-
cessing plane blocks. Such separation of processing and decision
planes allows an intuitive programming model made up of rules
and actions.

4.2 Rule-action programming model
The decision plane of a protocol has a natural representation as

a set of rules encoding the decision logic. These rules govern the
processing plane by naming actions that must be performed de-
pending on the outcome of rule evaluation. For example, a rule-
action pair will read if hdr.rate == 54Mbps, perform
action_decode_54Mbps.

111

Rearrange
data bits

FFT

Viterbi
decode

Deinter-
leaving

I- and P-
separation

QAM
slicing

Viterbi
decode

Blocks

Actions

Rules
Y

N

Y

N

Decision plane

Processing plane

Information plane

Figure 1: (a) Directed acyclic graph of an action customized for video
delivery. (b) OpenRadio programming model depicting the separation
of decision and processing planes and their relation with the informa-
tion plane.

Actions are directed acyclic graphs (DAGs) of signal-processing
operations. Each operation is typically simple: it takes values from
an input stream, applies a simple operation such as an FFT, and
outputs the processed stream. Operations do not include condition-
als or other complex, dynamic logic since that is factored out into
the decision plane. An example action DAG for a video decoding
chain is shown in fig. 1(a).

The regular interface of a processing plane block is composed of
the data inputs (eg. complex samples) and data output (eg. soft bits,
complex samples). In addition, a block has configuration inputs
(eg. FFT size) and output statistics (eg. energy value for a packet-
detect block, rate field for a header-parsing block). Collection of
all configurations and statistics from the processing plane forms an
information plane that acts as the bi-directional interface between
decision and processing planes (fig. 1(b)). Rules are written on
elements of the information plane. Similarly, the decision plane
exercises control over the processing plane through configuration
primitives made available on the information plane.

The programming model of rules and actions is a specific con-
crete representation of the concept of decision and processing plane
decoupling. It lets us express protocols declaratively by preserv-
ing the decoupling semantics. Actions only specify the functional
behavior and data dependencies without specifying any execution
schedules, hardware placement details or resource allocation. Sim-
ilarly, rules only specify the logical content without dictating how
they will be implemented. Thus, the model provides a generic
API without being tied to any particular system design or hard-
ware platform architecture. It also allows us to leverage extensive
prior work where the stream computation in actions is naturally
expressed using dataflow languages [16]. The current implemen-
tation of OpenRadio uses annotated C code, but its decoupled pro-
gramming model makes it simple to integrate new domain-specific
dataflow programming languages.

4.3 State machine model and deadlines
Rules and actions are assembled into a state machine to express

a fully-functional protocol, as in fig. 2. Each state specifies exactly
one action to be performed and contains rules for transitioning to
other states. For example, the header decode state will perform the
action of decoding the header field and include rules to transition to
data-decoding states, one for each data rate. Such a state machine
model matches naturally with the specification of protocols, some
of which use formal state machine languages in the standard itself.

In addition to rules and actions, a first class component of wire-

Y

N

Pkt not
found

Pkt
found

Video

Data

Success

Failure
S_DD

S_VD

S_ACK

S_HD

S_PS

Figure 2: A state machine with states for packet search (S_PS), header
decode (S_HD), video decode (S_VD), data decode (S_DD) and sending
an acknowledgement (S_ACK).

less protocols is deadlines. Deadlines may apply to specific actions
such as a maximum of 1µs delay in assessing channel idle/busy
state for effective channel backoff implementation in WiFi (i.e.
slot-time stipulation), or to a series of actions such as a maximum
delay of 25µs in decoding a packet from the end-of-arrival (due
to WiFi ACK-turnaround stipulation.) In the latter case, they exist
between certain states, and consist of hard timing requirements on
all of the computation (decision and processing-plane) that occurs
in the interval between those two states. Valid deadlines may exist
between any two states in a protocol but there must be a logical
route through the rules from the initial state to the end state.

Similar to the choice of rule-action model, the state machine
model is a specific choice for representing protocols that is intu-
itive and preserves the declarative nature of the programming in-
terface including specification of deadlines. Further, it allows us
to leverage prior work on formal state machine languages like [7]
with strong semantics to facilitate static analysis that is critical to
providing guaranteed execution times and meeting deadlines as we
discuss further in sec. 5.

4.4 Challenges
The key challenge in OpenRadio is efficient realization of the de-

coupled declarative programming model. In particular, the system
must be able to meet protocol deadlines reliably without requir-
ing the programmer to optimize implementation specifics. We can
summarize the challenges as follows:

• Efficient execution of computationally demanding process-
ing plane actions (≈100 Gflops) while retaining hardware
abstraction, programming modularity and flexibility.

• Maintaining realtime property over a sequence of states, i.e.,
under serial composition, in order to meet deadlines reliably.

The rich programming interface made up of rules-actions and
state-machine models is the key feature that distinguishes OpenRa-
dio from a bare-bones software-radio platform or a programmable
substrate like an FPGA platform that may offer similar performance.
Let us discuss the principles behind an efficient implementation of
this programming interface.

5. DESIGN AND IMPLEMENTATION
Decoupling of decision and processing planes allows us to pro-

vide a modular and declarative programming interface through the
rule, action and state machine models. Can we design a system
that implements such an interface with the level of computational
performance needed for modern protocols with 20-80MHz of band-
width while meeting tight latency deadlines on the order of tens of
microseconds? We answer the question in the affirmative in this

112

Processing plane block WiFi LTE 3G DVB-T
FIR/IIR X X X X

Correlation X X X X

Spreading X

FFT X X X

Channel Estimation X X X X

QAM Mapping X X X X

Interleaving X X X X

Convolutional Coding X X X X

Turbo Coding X X

Randomization X X X X

CRC X X X

Table 1: Many computationally intensive processing plane blocks are
common to all modern PHYs, differing only in configuration.

section describing the design and early results demonstrating its
feasibility. Our system is based on two keys principles.

5.1 Design principles
Learning from existing programmable solutions, OpenRadio fol-

lows the principle of scoping flexibility. We aim to provide enough
flexibility to implement most protocols and optimizations of inter-
est but no more. For example, the FFT block only needs to provide
configurable FFT-length, not a choice of different Fourier Trans-
form algorithms. Similarly, the convolutional decoder needs to be
configurable in the coding rate (say, 1/2, 1/3, 1/4, 1/5) or constraint
length over small parameter ranges but the actual algorithm (Viterbi
or BCJR) is immaterial. There is, however, still scope for blocks
that need almost arbitrary flexibility such as a bit interleaver.

Restricting the scope of flexibility where advantageous allows
for optimizing the hardware to perform some of the relatively-fixed
operations extremely efficiently while being able to provide the req-
uisite configurability. The merit of this approach lies in the ob-
servation that many of the heavy computational processing plane
blocks of modern PHY protocols are common to most standards
and fall in this category (Table 1). Further, commodity DSP plat-
forms with hybrid architectures optimizing common compute ker-
nels are becoming widely available, either through loosely-coupled
on-chip accelerators as in TI KeyStone [26] or through tightly-
coupled special-purpose instructions as in CEVA-XC Family [9],
[20][14][12]. A well-designed accelerator can provide speed-ups
of up to an order of magnitude (10-25x) over pure-software [13].
As a price reference point, a TI KeyStone chip housing tens of ac-
celerators is marked at less than $200 and is capable of processing
80MHz WiFi-like intensity of computation, i.e. it easily supports
WiFi, WiMAX, LTE and W-CDMA.

While the above hardware substrate provides the raw horsepower
needed for a programmable dataplane, OpenRadio’s dataplane must
provide a modular declarative interface while ensuring that packets
are processed within the deadlines of the protocol. To this end,
OpenRadio follows the key principle of decision and processing
plane separation throughout its system design. In contrast with pro-
viding modularity and declarative interfaces, the motivation here is
to achieve near-deterministic execution times for processing plane
actions. On a hybrid architecture, blocks implemented through
hardware accelerators would finish in predictable amounts of time
by default. This may not be true of other software-based blocks that
will run on CPUs or DSPs. The algorithmic reason for such unpre-
dictability is presence of branches in arbitrary code. For example,
a soft-slicer block that could do any of BPSK, QPSK, 16-QAM
or 64-QAM, will run for different amounts of time in each mode.
However, a branch is precisely a decision plane rule. The factoring

of algorithm and code into decision and processing planes pushes
out all such branches to the decision plane, leaving only branch-
free code in processing plane blocks.

Combining the decoupling principle with assisting implemen-
tation choices, we not only achieve deterministic-runtime blocks
but also preserve the property under composition as required for
actions. This is the key property that allows OpenRadio to sys-
tematically meet execution deadlines. An added advantage of this
principle is a direct mapping of declarative programs to execution
primitives which greatly simplifies the system design.

5.2 Preliminary implementation
The design of OpenRadio system is focused towards utilizing

multi-core DSP architectures. They typically contain DSP cores
optimized for signal processing computation and hardware accel-
erators providing speed-up of specific, commonly used algorithms.
Such platforms provide the most desired tradeoff between perfor-
mance and flexibility. Our specific hardware choice is the TI Key-
Stone architecture [26]. The software challenge is to harness the
raw compute horsepower while retaining modular and declarative
abstractions.

Decision plane

Slave
DSPs

Viterbi
Accels

FFT
Accel

Master
DSP

Processing plane

D
M

A
, S

H
M

DMA, SHM

DMA, SHM

G
ig

E

RF plane

Figure 3: OpenRadio basestation internals with different kinds of
compute cores and an RF frontend.

The core objective of the runtime system is fast and determin-
istic execution of actions. While efficient execution is achieved
through accelerated hardware, determinism in runtime is obtained
through decision/processing separation down to the software level,
mimicking the programming model itself. The system architecture
is shown in fig. 3. The same separation is applied to hardware re-
sources as well, designating the decision plane core as the master
core controlling the processing plane slave cores and accelerators.

The decision plane runtime emulates the protocol state-machine
by evaluating rules as transitions are made between states. The ac-
tion associated with each state is computed on the processing plane
by assigning constituent blocks to slave cores (or accelerators) ac-
cording to a pre-computed execution and resource allocation sched-
ule. Such static scheduling is made possible because of our spe-
cific implementation choices such as software-addressed L2 mem-
ory and event-polling instead of interrupts. They eliminate major
sources of indeterminism from the underlying hardware architec-
ture as well. Further, using a message-passing model for inter-
processor communication allows accurate accounting of IPC laten-
cies. Full description of implementation and scheduling framework
are beyond the scope of this paper. However, it is worth stating that
the scheduling of actions in our deterministic model bears strong
resemblance with instruction loop-pipelining in compilers. This
reduction of model allows us to leverage compiler scheduling algo-
rithms as in [24].

113

Our early prototype is capable of processing full 54Mbps 802.11g
PHY layer stack on a single KeyStone chip with more than one full
DSP core worth of computer power still available for implementing
protocol modifications. The utilization figure includes the overhead
introduced by the runtime software that strives to maintain modu-
larity. This overhead measures to roughly 20% of the entire com-
pute load.

5.3 Design limitations
Our software system design applies equally well to other multi-

core processors, hybrid or symmetric. Still, it is based on certain
judicious assumptions.

First, OpenRadio assumes that the majority of the computation
time is spent in the processing plane of the protocol, and decision
overhead is negligible. However, heavy decision planes would in-
cur prohibitive inter-core communication overheads implying that
decision/processing plane separation is not the best design choice.
Similarly, a heavy sequential algorithm on the processing plane
would restrict the benefits of a multi-core architecture if it forbids
pipelined parallelism.

Second, OpenRadio assumes decision/processing refactoring is
meaningful in signal processing blocks. However, some blocks
that need to take decisions, like packet-search block, are best ex-
pressed with some embedded decision code. If the gap in average
and worst-case run times becomes too high, maintaining the deter-
ministic semantic on that block could become very inefficient.

6. RELATED WORK AND DISCUSSION
OpenRadio has a lot in common with SDN efforts such as Open-

Flow [18], both in goals and in challenges. The key design consid-
eration is to pick the right abstractions to balance flexibility against
performance. However, there are some major differences too. Inter-
operation with existing devices on the Internet is a major consider-
ation for layer-3 SDN interfaces. For OpenRadio, inter-operation
is much less of an issue as it operates on layers 1 and 2 which are
contained within autonomous domains. Further, a programmable
wireless dataplane has a massive computational load that must be
processed under strict deadlines, a challenge unique to wireless.

There are comparable solutions for programmable wireless data-
planes that excel in some dimension at the cost of others. GNURa-
dio [8] offers unlimited flexibility through purely software-based
processing and convenient programming through high-level inter-
faces at the cost of performance and real-time guarantees. SORA
[27] offers full flexibility and sufficient performance while arguably
sacrificing ease of programming by nearly by-passing the desktop
operating system. WARP [17] and AirBlue [22] use an FPGA ap-
proach to retain flexibility equal to software while gaining perfor-
mance but end up driving the price-point high. Others like NI PXIe-
1082 SDR [21] have taken an all-out approach with unrestrained
FPGA and CPU horsepower resulting in extremely expensive sys-
tems (≈$50k per SDR platform) only good for small-scale labora-
tory research and prototyping. Yet other cellular domain platforms
[3][26, 12, 9, 14] tend to provide the right price-performance and
flexibility point but remain hard to program. This has led to the
development of higher-level interfaces [22, 19] to work with these
platforms.

OpenRadio strikes a unique combination of the programmability-
performance-price metrics by treating all three as primary objec-
tives from the get-go. The design is based on principled refactoring
of wireless protocols into processing and decision planes. It is gen-
eral enough to be implemented on a variety of platforms including
DSPs, FPGAs and multi-core desktop machines. Code has enough
structure that it can be statically analyzed to yield guaranteed real-

time performance and efficient hardware use while still exposing
modular, declarative interfaces.

Our intent is to provide programmability across the entire wire-
less stack. In this paper, most of our design choices are guided
by PHY-layer considerations. The decision and processing plane
model applies equally well to the MAC layer - the processing plane
operation is to map multiple traffic queues onto the channel frequency-
time grid while the decision plane operation is to pick the right
mapping according to a programmable algorithm. The weighting
of computation between the two planes may be different than that
in PHY. This exploration is part of our ongoing research.

7. REFERENCES
[1] http://en.wikipedia.org/wiki/3GPP.
[2] http://en.wikipedia.org/wiki/Comparison_of_mobile_phone_standards.
[3] RBS6000 Base Station.

http://www.ericsson.com/ourportfolio/products/base-stations.
[4] 3GPP TS 23.203 V8.3.1.
[5] 3GPP TS 36.201 - v1.0.0. LTE Physical Layer - General Description.
[6] Alcatel-Lucent. R1-093340: Blank Subframes for LTE. 3GPP TSG RAN

WG1,meeting 58, Shenzhen, China, August 2009.
[7] M. Anlauff. XASM - An Extensible, Component-Based Abstract State

Machines Language. In International Workshop on Abstract State Machines,
Lecture Notes on Computer Science (LNCS), pages 69–90. Springer-Verlag,
2000.

[8] E. Blossom. GNU radio: tools for exploring the radio frequency spectrum.
Linux J., 2004:4–, June 2004.

[9] CEVA, Inc. CEVA-XC High-Performance, Low-Power DSP Cores for
Advanced Wireless Communications.

[10] Earth911.com. Facts about cell phones.
http://earth911.com/recycling/electronics/cell-phone/facts-about-cell-phones/.

[11] Ericsson Corp. Traffic and Market Report, June 2012.
http://www.ericsson.com/res/docs/2012/traffic_and_market_report_june_2012.pdf.

[12] Freescale, Inc. StarCore Digital Signal Processors.
[13] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,

S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding sources of
inefficiency in general-purpose chips. ISCA ’10. ACM, 2010.

[14] Intel Corporation, Inc. Intel Solutions for the Next Generation Multi-Radio
Basestation. Application Note.

[15] ISO/IEC Moving Picture Experts Group (MPEG). The MPEG4 Standard.
ISO/IEC 14496 - Coding of audio-visual objects, 1998.

[16] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow
programming languages. ACM Comput. Surv., 36(1):1–34, Mar. 2004.

[17] A. Khattab. WARP: A flexible platform for clean-slate wireless medium access
protocol design. SIGMOBILE Mob. Comp. Comm., January 2008.

[18] N. McKeown. OpenFlow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 38:69–74, March 2008.

[19] Microsoft Research. Brick Specification. The SORA Project, 2011.
[20] Mindspeed Technologies, Inc. MindSpeed Baseband Processors.
[21] National Instruments, Inc. NI PXIe-1082 SDR Chassis.

http://sine.ni.com/nips/cds/view/p/lang/en/nid/207346.
[22] A. Ng, K. E. Fleming, M. Vutukuru, S. Gross, Arvind, and H. Balakrishnan.

Airblue: A System for Cross-Layer Wireless Protocol Development. 2010.
[23] Nokia Siemens Networks. Flexi Multiradio BTS.

http://www.nokiasiemensnetworks.com/portfolio/products/mobile-
broadband/single-ran-advanced/flexi-multiradio-base-station.

[24] J. Sánchez and A. González. The Effectiveness of Loop Unrolling for Modulo
Scheduling in Clustered VLIW Architectures. ICPP ’00. IEEE Computer
Society, 2000.

[25] S. Sen, S. Gilani, S. Srinath, S. Schmitt, and S. Banerjee. Design and
Implementation of an "Approximate" Communication System for Wireless
Media Applications. In ACM SIGCOMM, 2009.

[26] Texas Instruments. TMS320TCI6616 Communications Infrastructure KeyStone
SoC. Data Manual.

[27] J. Zhang. Experimenting software radio with the SORA platform. In
Proceedings of ACM SIGCOMM, 2010.

114

	Introduction
	Use cases
	Cell-size based optimization
	Co-existence of heterogeneous cells
	Application-specific wireless service
	Evolving standards

	Design goals
	Programming abstractions
	Modular declarative interface
	Rule-action programming model
	State machine model and deadlines
	Challenges

	Design and Implementation
	Design principles
	Preliminary implementation
	Design limitations

	Related work and discussion
	References

