
Towards an Elastic Distributed SDN Controller

†Advait Dixit, ‡Fang Hao, ‡Sarit Mukherjee, ‡T.V. Lakshman, †Ramana Kompella
†Purdue University, ‡Bell Labs Alcatel-Lucent

ABSTRACT

Distributed controllers have been proposed for Software Defined
Networking to address the issues of scalability and reliability that
a centralized controller suffers from. One key limitation of the
distributed controllers is that the mapping between a switch and
a controller is statically configured, which may result in uneven
load distribution among the controllers. To address this problem,
we propose ElastiCon, an elastic distributed controller architecture

in which the controller pool is dynamically grown or shrunk ac-
cording to traffic conditions and the load is dynamically shifted
across controllers. We propose a novel switch migration protocol
for enabling such load shifting, which conforms with the Openflow
standard. We also build a prototype to demonstrate the efficacy of
our design.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

Keywords

Data center networks, software-defined networks

1. INTRODUCTION
Software Defined Networking (SDN) is revolutionizing the net-

working industry by enabling programmability, easier management
and faster innovation [11, 8, 4, 14]. Many of these benefits are
made possible by its centralized control plane architecture, which
allows the network to be programmed by the application and con-
trolled from one central entity. However, like any other centralized
system, the centralized controller brings up issues of scalability and
reliability. Hence the next logical step is to build a logically cen-
tralized, but physically distributed control plane, which can benefit
from the scalability and reliability of the distributed architecture
while preserving the simplicity of the centralized system.

A few recent papers have explored architectures for building dis-
tributed SDN controllers [10, 16, 13]. While these have focused on
building the components necessary to implement a distributed SDN

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HotSDN’13, August 16, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

controller, one key limitation of these systems is that the mapping
between a switch and a controller is statically configured, mak-
ing it difficult for the control plane to adapt to traffic load varia-
tions. Real networks (e.g., data center networks, enterprise net-
works) may exhibit significant variations in both temporal and spa-
tial traffic characteristics. First, along the temporal dimension, it
is generally well-known that traffic conditions can depend on the
time of day (e.g., less traffic during night), but there could be varia-
tions even in shorter time scales (e.g., minutes to hours) depending
on the applications running in the network. For instance, based on
measurements over real data centers in [2], we can estimate that the
peak-to-median ratio of flow arrival rates can be almost 1-2 orders
of magnitude (more details in Section 2). Second, there could be
spatial traffic variations; depending on where applications are gen-
erating flows, some switches can observe a larger number of flows
compared to other portions of the network.

Now, if the switch to controller mapping is static, a controller
may become overloaded if the switches mapped to this controller
suddenly observe a large number of flows, while other controllers
remain underutilized. Furthermore, the load may shift across con-
trollers over time, depending on the temporal and spatial varia-
tions in traffic conditions. Hence static mapping can result in sub-
optimal performance. One way to improve performance may be
to over-provision controllers for an expected peak load, but this
approach is clearly inefficient due to its high cost and energy con-
sumption, especially considering load variations can be up to two
orders of magnitude.

To address this problem, in this paper, we propose ElastiCon,
an elastic distributed controller architecture in which the workload
is dynamically shifted to allow the controllers to operate at a pre-
specified load window. When the aggregate load changes over time,
the system dynamically expands or shrinks the controller pool as
needed. Our goal in this paper is to explore what ingredients are
necessary to enable such an elastic controller architecture. Clearly,
as load imbalance occurs, it is desirable to migrate a switch from a
heavily-loaded controller to a lightly-loaded one. However, such a
migration operation is not supported natively in the current de facto
SDN standard, OpenFlow. Designing such a conceptually-simple
primitive is not straightforward since it requires minimal disrup-
tion to normal operations, while guaranteeing consistency and re-
liability. We design a new migration algorithm that achieves these
properties based on the existing OpenFlow standard.

The migration primitive, however, is not sufficient by itself. We
need additional mechanisms to support the following three main
load adaptation operations: First, we need to periodically load bal-

ance the controllers by optimizing the switch to controller mapping
on the fly. Second, if the load exceeds the maximum capacity of
existing controllers, we need to grow the resource pool by adding

7

8

9

the delete message before the insert. Alternately, all switches could
be started with a dummy flow entry already inserted in the flow
table, so that we only do the deletion in this phase.

Note that we do not assume that the Flow-Removed message is
received by A and B at exactly the same time (as shown in Fig-
ure 2). Since we make the assumption the message ordering is
consistent across A and B after these controllers enter equal mode,
this means that all messages before this Flow-Removed will be
processed by A and after this will be processed by B, thus guaran-
teeing the safety property. Liveness is also clearly guaranteed since
both controllers are active for switch X.

Phase 3: Flush pending requests with a barrier. While B has
assumed ownership of X in the previous phase, the protocol is not
complete unless A detaches from managing switch X. However, it
cannot just detach immediately from the switch since there may be
pending requests at A that arrived before the Flow-Removed mes-
sage, for which A is still the owner. This appears easy since we
assume same ordering at A and B, so all A needs to do is to just
wait until all the messages that arrived before Flow-Removed are
processed by A and committed to the switch. However, there is
no explicit acknowledgment from the switch that these messages
are committed; TCP-level acknowledgments do not mean anything
since the switch still needs to commit these messages, and it does
so in any order. If these messages are not committed and A de-
taches signaling to B to become the new master, that will automat-
ically reduce the node A to a slave, which will cause the switch
to ignore those previous commits. Thus, in order to make sure all
these messages are committed, A transmits a Barrier-Request
and waits for the Barrier-Reply, only after which it signals “end
migration” to the final master B.

Phase 4: Make target controller final master. The final master B
sets its role to master for the switch by sending a Role-Request
message to the switch. It also updates the distributed data store
to indicate this. The switch sets A to slave when it receives the
Role-Request message from the final master B. B remains active
and processes all messages from the switch for this phase, so both
safety and liveness are guaranteed.

The above algorithm requires 6 round-trip times (including inter-
controller node communication) to complete the migration. But
note that we need to trigger migration only once in a while when
the load conditions change, as we discuss in the next section.

3.3 Load Adaptation
Figure 1 (top part) shows the load adaptation procedure in three

steps: load measurement, adaptation decision computation, and mi-
gration action.

Load Estimation. A load estimation module runs on the controller
to report load statistics, including CPU and memory usage, and
network I/O rate. It also reports the average message arrival rate
from each switch. Our experiments show that the CPU is typically
the throughput bottleneck and CPU load is roughly in proportion to
the message rate.

Adaptation Decision Computation. We set high and low thresh-
olds both for the individual controller load and for the overall ag-
gregated load of the controller pool. When an individual controller
load is beyond the thresholds but aggregated load is within the
threshold, we invoke load balancing by migrating selected switches
to their new master controllers. When the aggregated load is be-
yond the threshold, new controllers will be added or existing con-
trollers will be removed. Switch and the new master controller se-
lection are based on both the load conditions and network topology.
For example, it may be desirable to have neighboring switches to

be controlled by the same master to reduce inter-controller commu-
nication.

Adaptation Action. Following the adaptation decision, a switch
can be migrated to a former slave by following the steps in Sec-
tion 3.2. In case of controller addition or removal, one or more
switches may need to be assigned to new master controllers that
they are not currently connected with. This can be done by re-
placing one slave controller IP address of the switch with the new
controller using the edit-config operation of OpenFlow Man-
agement and Configuration Protocol [6]. Once the connection be-
tween the new controller and the switch is established, we then in-
voke the migration procedure to swap the old master with the new
slave controller. If a switch does not support updating controller
IP addresses at runtime, other workarounds based on controller IP
address virtualization are also possible (not described due to lack
of space).

3.4 Implementation Status
We implemented a prototype ElastiCon by modifying and adding

components to the centralized controller, and using Hazelcast as the
distributed data store. We use routing application as a canonical ex-
ample for our prototype, although our design is generic. The rout-
ing application consists of four modules: link discovery, topology,
device manager, and forwarding. We are currently implementing
the load adaptation modules.

4. EVALUATION
In this section, we evaluate the performance of our ElastiCon pro-

totype using an emulated SDN-based data center network testbed.
We first describe the enhanced Mininet testbed that we used to carry
out the evaluation, and then present our experimental results.

4.1 Enhanced Mininet Testbed
Our experimental testbed is built on top of Mininet [12], which

emulates a network of Open vSwitches [15]. Open vSwitch is a
software-based virtual Openflow switch. It implements the data
plane in kernel and the control plane as a user space process. Mininet
has been widely used to demonstrate the functionalities, but not the
performance, of a controller because of the overhead of emulating
data flows. First, actual packets need to be exchanged between the
vSwitch instances to emulate packet flows. Second, a flow arrival
resulting in sending a Packet-In to the controller incurs kernel to
user space context switch overhead in the Open vSwitch. From our
initial experiments we observe that these overheads significantly
reduce the maximum flow arrival rate that Mininet can emulate,
which in turn slows down the control plane traffic generation ca-
pability of the testbed. Note that for the evaluation of ElastiCon,
we are primarily concerned with the control plane traffic load and
need not emulate the high overhead data plane. We achieve this
by modifying Open vSwitch to inject Packet-In messages to the
controller without actually transmitting packets on the data plane.
We also log and drop Flow-Mod messages to avoid the additional
overhead of inserting them in the flow table. Although we do not
use the data plane during our experiments, we do not disable it.
So, the controller generated messages (like LLDPs, ARPs) are still
transmitted on the emulated network.

In order to experiment with larger networks we deployed mul-
tiple hosts to emulate the testbed. We modified Mininet to en-
able us to run the Open vSwitch instances on different hosts. We
created GRE tunnels between the hosts running Open vSwitch in-
stances to emulate links of the data center network. Since we
do not actually transmit packets in the emulated network, the la-
tency/bandwidth characteristics of these GRE tunnels do not im-

10

1 2 3 4 5
Number of controller nodes

0

10

20

30

40

50

60

70

80

90

100
T

h
ro

u
g
h
p
u
t
(i
n

x
1
0

3
fl
o
w

s
/s

e
c
o
n
d
s
) 2 Cores

4 Cores

(a) Controller throughput

500 1000 1500 2000 2500 3000 3500 4000 4500

Packet-in arrival rate

0

5

10

15

20

9
5

t
h

p
e
rc

e
n
ti
le

re
s
p
o
n
s
e

ti
m

e
(i
n

m
s
e
c
) 1 Controller

2 Controllers

4 Controllers

(b) Response time

Figure 3: Performance with varying number of controller nodes.

pact our results. They are used only to transmit link-discovery
messages to enable the controllers to construct a network topol-
ogy. To isolate the switch to controller traffic from the emulated
data plane of the network, we run Open vSwitch on hosts with
two Ethernet ports. One port of each host is connected to a gi-
gabit Ethernet switch and is used to carry the emulated data plane
traffic. The other port of each host is connected to the hosts that
run the controller. We isolated the inter-controller traffic from the
controller-switch traffic too by running the controller on dual-port
hosts.

4.2 Experimental Results
We report on the performance of ElastiCon using the routing ap-

plication. All experiments are conducted on k=4 fat tree emulated
on the testbed. We use 4 hosts to emulate the entire network. Each
host emulates a pod and a core switch. Before starting the exper-
iment, the emulated end hosts ping each other so that the routing
application can learn the location of all end hosts in the emulated
network.

Throughput. We send 10000 back-to-back Packet-In messages
and plot the throughput of ElastiCon with varying number of con-
troller nodes (see Figure 3(a)). We repeat the experiment while
pinning the controllers to two cores of the quad-core server. We
observe two trends in the results. First, adding controller nodes in-
creases the throughput almost linearly. This is because there is no
data sharing between controllers while responding to Packet-In
messages. Second, the throughput reduces when we restrict the
controllers to two cores indicating that CPU is indeed the bottle-
neck.

Response time. We plot the response time behavior for Packet-In
messages with changing flow arrival rate (see Figure 3(b)). We re-
peat the experiment while changing the number of controller nodes.
As expected, we observe that response time increases marginally
up to a certain point. Once the packet generation rate exceeds the
capacity of the processor, queuing causes response time to shoot
up. This point is reached at a higher packet-generation rate when
ElastiCon has more number of nodes.

Impact of load balancing. We show how switch migration can
improve response time. In this experiment, ElastiCon has two con-
trollers, A and B. In the beginning of the experiment, the load is

0 5 10 15 20 25 30 35
Response time (in msec)

0.80

0.85

0.90

0.95

1.00

P
ro

b
a
b
ili

ty

A with 7 switches

B with 1 switch

A with 6 switches

B with 2 switches

A with 5 switches

B with 3 switches

B with 4 switches

Figure 4: Impact of switch migration

unequally divided between the two nodes. Of the eight top-of-rack
switches in a fat tree that generate Packet-In messages, seven are
connected to A and one is connected to B. Note that this scenario
is not that different from having four switches connected to each of
the controllers, but with different load on each of the switches (and
consequently controllers). Each switch generates traffic at 2000
Packet-In messages per second. We plot the tail of two CDFs
of response time, one each for controller A and controller B. These
two CDFs correspond to the first two curves in Figure 4. As the fig-
ure shows, the switch connected to controller A experiences higher
response time due to the load imposed by other switches connected
to the same controller. Then, we migrate one switch from controller
A to controller B. Now, controller A has six switches connected to
it and controller B has two. Again, we plot the CDFs of the re-
sponse times of both controllers. These CDFs correspond to the
third and fourth curves. As the figure shows, the response time of
controler A improves due to reduced load on the controller. Re-
sponse time of controller B remains almost unchanged since the
load imposed by two switches is still well below its processing ca-
pability. We continue to migrate switches from controller A to B
until both controllers are equally loaded. The response time of con-
troller A reduces with its load. When a controller is connected to

11

0 20 40 Switch
Migration

60 80 100

Packet index

0

1

2

3

0

1

2

3

4
R

e
s
p
o
n
s
e

ti
m

e
(i
n

m
s
e
c
) 1000 packets/sec

1500 packets/sec

Figure 5: Effect of migration on response time

4 or fewer switches, the response time settles down. This shows
load-balancing via switch migration can improve performance.

Impact due to migration. Finally, we demonstrate the feasibility
of the migration algorithm described in Section 3.2. We plot the
response times of 50 Packet-In messages before and after migra-
tion in Figure 5 for two flow arrival rates. We observe a minor in-
crease in response time just before migration, possibly due to extra
messages exchanged. But no messages are lost or duplicated. The
migration process takes about 20ms. This shows that migration can
be done quickly and with minimal impact on response time.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented our design of ElastiCon and

showed that our initial evaluation results are very encouraging. We
are continuing the implementation of the load adaptation modules,
with focus on developing load adaptation algorithms that compute
optimal switch migration strategy under dynamic traffic load. In
addition, we plan to explicitly address the fault tolerance issues in
the design by modifying the switch migration procedure. This may
require running three controllers in equal role and using a consen-
sus protocol between them. We also plan to study the impact of
application data sharing patterns on scalability and elasticity.

6. ACKNOWLEDGEMENTS
The authors thank anonymous reviewers for comments that helped

improve the paper. This work was supported in part by NSF Awards
CNS-1054788 and CNS-1219004.

7. REFERENCES
[1] “Beacon,” openflow.stanford.edu/display/Beacon/Home.

[2] T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics of data
centers in the wild,” in IMC, 2010.

[3] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: A system for scalable OpenFlow
control,” Tech. Rep. TR10-11, CS Department, Rice University, Dec. 2010.

[4] M. Casado, M. J. Freedman, and S. Shenker, “Ethane: Taking Control of the
Enterprise,” in ACM SIGCOMM, 2007.

[5] “Floodlight,” floodlight.openflowhub.org.

[6] Open Networking Foundation, “OpenFlow Management and Configuration
Protocol (OF-Config 1.1),” June 2012.

[7] Open Networking Foundation, “OpenFlow Switch Specification (Version
1.3.0),” June 2012.

[8] A. Greenberg, G. Hjalmtysson, D. A. Maltz, et al., “A clean slate 4D approach
to network control and management,” in SIGCOMM CCR, 2005.

[9] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Mckeown, and
S. Shenker, “NOX: Towards an Operating System for Networks,” in SIGCOMM

CCR, 2008.

[10] T. Koponen et al., “Onix: A Distributed Control Platform for Large-scale
Production Networks,” in OSDI, 2010.

[11] T.V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo, “The
SoftRouter Architecture,” in ACM HOTNETS, 2004.

[12] B. Lantz, B. Heller, and N. McKeown, “A network in a Laptop: Rapid
Prototyping for Software-Defined Networks,” in HotNets, 2010.

[13] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Logically
Centralized? State Distribution Trade-offs in Software Defined Networks,” in
HotSDN, 2012.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, et al., “Openflow:
enabling innovation in campus networks,” SIGCOMM CCR, 2008.

[15] “Open vswitch,” openvswitch.org.

[16] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control Plane for
OpenFlow,” in INM/WREN, 2010.

[17] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On
Controller Performance in Software-Defined Networks,” in HotICE, 2012.

12

