Programmable Data Planes
COS 597E: Software Defined Networking

Jennifer Rexford
Princeton University
MW 11:00am-12:20pm

Data Plane

- Streaming algorithms that act on packets
 - Matching on some bits, taking a simple action
 - ... at behest of control and management plane
- Wide range of functionality
 - Forwarding and access control
 - Buffering, marking, shaping, and scheduling
 - Rewriting header fields (e.g., NAT)
 - Traffic monitoring and deep packet inspection
 - Encryption, compression, and transcoding

A Need for Speed

- High link speed
 - 10 Gbps, 40 Gbps, 100 Gbps
- Small packets
 - 40-byte TCP ACK packets
- Small time per packet
 - 40 Gbps = 124 Mpps with 320-bit packets
 - 8 ns to process a packet
- Routers need low latency
 - Relatively limited opportunity to batch or pipeline

A Range of Technologies

- ASIC (App-Specific Integrated Circuit)
 - Fast, dense chip, but expensive to change
- FPGAs and network processors
 - Fast, reconfigurable, hard to program
- Graphics Processing Units
 - Massive parallel computation on small cores
- Software on commodity computer
 - Easy to program, but I/O bandwidth, memory copying, and interrupt overheads

Click Modular Router

Click Motivation

- Flexibility
 - Add new features and enable experimentation
- Openness
 - Allow users/researchers to build and extend
 - (In contrast to most commercial routers)
- Modularity
 - Simplify the composition of existing features
 - Simplify the addition of new features
- Speed/efficiency
 - Operation (optionally) in the operating system
 - Without user needing to grapple with OS internals
Router as a Graph of Elements

- Large number of small elements
 - Each performing a simple packet function
 - E.g., IP look-up, TTL decrement, buffering
- Connected together in a graph
 - Elements inputs/outputs snapped together
 - Beyond elements in series to a graph
 - E.g., packet duplication or classification
- Packet flow as main organizational primitive
 - Consistent with data-plane operations on a router
 - (Larger elements needed for, say, control planes)

Push vs. Pull

- Packet hand-off between elements
 - Directly inspired by properties of routers
 - Annotations on packets to carry temporary state
- Push processing
 - Initiated by the source end
 - E.g., when an unsolicited packet arrives (e.g., from a device)
- Pull processing
 - Initiated by the destination end
 - E.g., to control timing of packet processing (e.g., based on a timer or packet scheduler)

Click Language

- Declarations
 - Create elements
- Connections
 - Connect elements
- Compound elements
 - Combine multiple smaller elements, and treat as single, new element to use as a primitive class
- Language extensions through element classes
 - Configuration strings for individual elements
 - Rather than syntactic extensions to the language

Handlers and Control Socket

- Access points for user interaction
 - Appear like files in a file system
 - Can have both read and write handlers
- Examples
 - Installing/removing forwarding-table entries
 - Reporting measurement statistics
 - Changing a maximum queue length
- Control socket
 - Allows other programs to call read/write handlers
 - Command sent as single line of text to the server

An Observation…

- Click is widely used
 - And the paper on Click is widely cited
- Click elements are created by others
 - Enabling an ecosystem of innovation
- Take-away lesson
 - Creating useful systems that others can use and extend has big impact in the research community
 - And brings tremendous professional value
 - Compensating amply for the time and energy 😊