Wide-Area Traffic Management
COS 597E: Software Defined Networking

Jennifer Rexford
Princeton University
MW 11:00am-12:20pm

Traffic Management
• Assigning resources to traffic
 – Optimize some objective
 – Min congestion, max utility, min delay, ...
 – Given network resource constraints
• Three main “knobs”
 – Routing: what path(s) the traffic takes
 – Link scheduling: how to share each link
 – Rate control: how much a source can send
• Host/network split
 – Host: rate control
 – Network: routing and link scheduling

Simple Traffic Management
• Protocols adapt automatically
 – TCP senders send less traffic during congestion
 – Routing protocols adapt to topology changes
• But, does the network run efficiently?
 – Congested link when idle paths exist?
 – High-delay path when a low-delay path exists?
• How should routing adapt to the traffic?
 – Avoiding congested links in the network
 – Satisfying application requirements (e.g., delay)

Automatically Adapting the Link Weights
ARPAnet Routing

Original ARPAnet Routing (1969)
• Routing
 – Shortest-path routing based on link metrics
 – Distance-vector algorithm (i.e., Bellman-Ford)
• Link metrics
 – Instantaneous queue length plus a constant
 – Each node updates distance computation

Problems With the Algorithm
• Instantaneous queue length
 – Poor indicator of expected delay
 – Fluctuates widely, even at low traffic levels
 – Leading to routing oscillations
• Distance-vector routing
 – Transient loops during (slow) convergence
 – Triggered by link weight changes, not just failures
• Protocol overhead
 – Frequent dissemination of link metric changes
 – Leading to high overhead in larger topologies
New ARPAnet Routing (1979)

- Averaging of the link metric over time
 - Old: Instantaneous delay fluctuates a lot
 - New: Averaging reduces the fluctuations
- Link-state protocol
 - Old: Distance-vector computation leads to loops
 - New: Link-state protocol where each router computes paths based on the complete topology
- Reduce frequency of updates
 - Old: Too many update messages
 - New: Send updates if change passes a threshold

Performance of New Algorithm

- Light load
 - Delay dominated by the constant part (transmission delay and propagation delay)
- Medium load
 - Queuing delay is no longer negligible on all links
 - Moderate traffic shifts to avoid congestion
- Heavy load
 - Very high metrics on congested links
 - Busy links look bad to all of the routers
 - Routers may send packets on longer paths

Revised ARPAnet Metric (1987)

- Limit path length
 - Bound the value of the link metric
 - "This link is busy enough to go two extra hops"
- Prevent over-reacting
 - Shed traffic from a congested link gradually
 - Starting with alternate paths that are slightly longer
 - Through weighted average in computing the metric, and limits on the change from one period to the next
- New algorithm
 - New way of computing the link weights
 - No change to routing protocol or path computation

Optimizing the “Static” Link Weights

Routing With “Static” Link Weights

- Routers flood information to learn topology
 - Determine “next hop” to reach other routers...
 - Compute shortest paths based on link weights
- Link weights configured by the operator

Setting the Link Weights

- How to set the weights
 - Inversely proportional to link capacity?
 - Proportional to propagation delay?
 - Network-wide optimization based on traffic?
Pros and Cons

- **Advantages**
 - Network-wide optimization
 - Avoids oscillation
 - No changes to the routing protocols

- **Disadvantages**
 - Overhead of collecting the measurements
 - Limited splitting of traffic over multiple paths
 - Computational complexity of the optimization
 - Transient disruptions during weight changes

- So, performed at a slow time scale (hours)

Explicit End-to-End Paths

- Establish end-to-end path in advance
 - Learn the topology (as in link-state routing)
 - End host or router computes and signals a path

- Routers supports virtual circuits
 - Signaling: install entry for each circuit at each hop
 - Forwarding: look up the circuit id in the table

MPLS-TE

- Learn about congestion
 - Dynamically changing link weights
- Reserve resources on paths
 - Pick a path, and signal to reserve resources
- Change paths during congestion
 - Pick a new path, and reserve resources
- More flexible, but still some limitations
 - Uncoordinated decisions at different nodes
 - Suboptimal decisions, and non-deterministic
 - Complex interaction of several protocols