Wide-Area Traffic Management COS 597E: Software Defined Networking

Jennifer Rexford Princeton University MW 11:00am-12:20pm

Traffic Management

- · Assigning resources to traffic
 - Optimize some objective • Min congestion, max utility, min delay, ...
 - Given network resource constraints
- Three main "knobs"
- Routing: what path(s) the traffic takes
- Link scheduling: how to share each link
- Rate control: how much a source can send
- Host/network split
 - Host: rate control
 - Network: routing and link scheduling

Simple Traffic Management

- Protocols adapt automatically - TCP senders send less traffic during congestion
- Routing protocols adapt to topology changes
- But, does the network run efficiently? - Congested link when idle paths exist?
 - High-delay path when a low-delay path exists?
- · How should routing adapt to the traffic? - Avoiding congested links in the network - Satisfying application requirements (e.g., delay)

Automatically Adapting the Link Weights

ARPAnet Routing

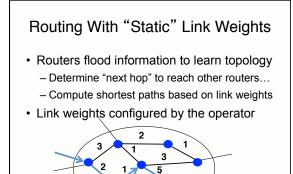
Original ARPAnet Routing (1969) Routing - Shortest-path routing based on link metrics - Distance-vector algorithm (i.e., Bellman-Ford) Link metrics - Instantaneous queue length plus a constant - Each node updates distance computation

Problems With the Algorithm

- · Instantaneous queue length
 - Poor indicator of expected delay
 - Fluctuates widely, even at low traffic levels
 - Leading to routing oscillations
- Distance-vector routing
 - Transient loops during (slow) convergence
 - Triggered by link weight changes, not just failures
- Protocol overhead
 - Frequent dissemination of link metric changes
 - Leading to high overhead in larger topologies

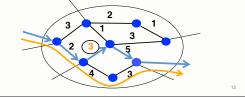
New ARPAnet Routing (1979)

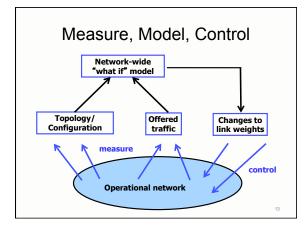
- Averaging of the link metric over time
 Old: Instantaneous delay fluctuates a lot
 - New: Averaging reduces the fluctuations
- Link-state protocol
 - Old: Distance-vector computation leads to loops
 - New: Link-state protocol where each router computes paths based on the complete topology
- Reduce frequency of updates
 - Old: Too many update messages
 - New: Send updates if change passes a threshold

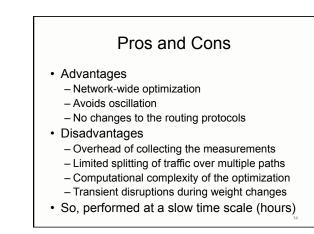

Performance of New Algorithm

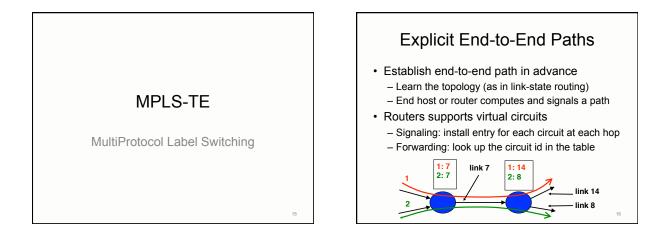
- Light load
 - Delay dominated by the constant part (transmission delay and propagation delay)
- Medium load
 - Queuing delay is no longer negligible on all links
 - Moderate traffic shifts to avoid congestion
- · Heavy load
 - Very high metrics on congested links
 - Busy links look bad to all of the routers
 - Routers may send packets on longer paths

Revised ARPAnet Metric (1987)


- Limit path length
 - Bound the value of the link metric
- "This link is busy enough to go two extra hops" Prevent over-reacting
 - Shed traffic from a congested link gradually
 - Starting with alternate paths that are *slightly* longer
 - Through weighted average in computing the metric, and limits on the change from one period to the next
- New algorithm
 - New way of computing the link weights
 - No change to routing protocol or path computation


Optimizing the "Static" Link Weights




Setting the Link Weights

- How to set the weights
 - Inversely proportional to link capacity?
 - Proportional to propagation delay?
 - Network-wide optimization based on traffic?

MPLS-TE

- Learn about congestion

 Dynamically changing link weights
- Reserve resources on paths

 Pick a path, and signal to reserve resources
- Change paths during congestion – Pick a new path, and reserve resources
- More flexible, but still some limitations
 - Uncoordinated decisions at different nodes
 - Suboptimal decisions, and non-deterministic
 - Complex interaction of several protocols