COS 597E: Software
Defined Networking

Jennifer Rexford
Princeton University
MW 11:00am-12:20pm

The Internet: A Remarkable Story

* Tremendous success

— From research experiment
to global infrastructure

« Brilliance of under-specifying
— Network: best-effort packet delivery
— Programmable hosts: arbitrary applications
* Enables innovation
— Apps: Web, P2P, VolP, social networks, ...
— Links: Ethernet, fiber optics, WiFi, cellular, ...

9/11/13

The State of Networking

Inside the ‘Net: A Different Story...

* Closed equipment .
— Software bundled with hardware [
— Vendor-specific interfaces
* Over specified
— Slow protocol standardization
» Few people can innovate
— Equipment vendors write the code
— Long delays to introduce new features

Do We Need Innovation Inside?

Many boxes (routers, switches,
firewalls, ...), with different interfaces.

Do We Need Intellectual Progress?

* Lots of domain details
— Plethora of protocols
— Heaps of header formats
— Big bunch of boxes
— Tons of tools
+ Teaching networking
— Practitioners: certification courses, on the job
— Undergraduates: how the Internet works

9/11/13

Software Defined Networking

Software Defined Networks

N
(l} control plane: distributed algorithms
N data plane: packet processing

I\ b N

‘/_J\{%L
LN

A-0 |

Software Defined Networks

<<I>> decouple control and data planes
N

- 8—8

Software Defined Networks

(l) decouple control and data planes
\ by providing open standard API

Simple, Open Data-Plane API
« Prioritized list of rules QOPOI‘IFJOW

— Pattern: match packet header bits

— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns

— Counters: #bytes and #packets

S S

1. src=1.2.*.*, dest=3.4.5.* - drop
2. src=**** dest=3.4.*.* > forward(2)
3. src=10.1.2.3, dest=*.*.* * - send to controller

(Logically) Centralized Controller

/<)
\~]//\ Controller Platform

VI
Vﬁ#&é

—

9/11/13

Protocols =» Applications Seamless Mobility
ControllerAppllcatlon » See host sending traffic at new location
(,ontroller eatiom . + Modify rules to reroute the traffic

Server Load Balancing Example SDN Applications

* Pre-install load-balancing policy

.) + Seamless mobility and migration
« Split traffic based on source IP

* Server load balancing

» Dynamic access control

 Using multiple wireless access points
» Energy-efficient networking

+ Adaptive traffic monitoring

* Denial-of-Service attack detection

* Network virtualization

src=0*,
dst=1.2.3.4

See http://www.openflow.org/videos/ 16

A Major Trend in Networking

An Opportunity to Rethink
N @ - E g

Google Microsoft crromcene * How should future networks be
OPEN NETWORKING L~ ~yaroo! — Designed
FOUNDATION verizen — Managed
— Programmed
GO \/gl * What are the right abstractions
_________ — Simple
I — Powerful
'h 9 — Reusable
1l Bought for $1.2 x 10

nicira (mostly cash)

Structure of the Course

9/11/13

Syllabus

* Introduction (3)

» SDN abstractions (6)

» SDN applications (4)

» SDN systems challenges (4)
» Enhancing the data plane (5)
» Course wrap-up (2)

Paper Reading

Read ~2 papers for each class

— Recent research papers on SDN

— Basis for discussions in class

Write reviews (1 page each)

— Summary (problem, solution)

— What you like

— What could use improvement

— What you would do next

Upload reviews to CS Dropbox before class
See “How to Read” on today’s syllabus

Lightweight Assignments

Programming assignments

— MiniNet platform (due 5pm Mon Sep 16)

— Ryu controller (due 5pm Tue Oct 1)

— Pyretic language (due 5pm Fri Oct 11)
Assignments are not graded
Collaboration policy

— Can freely collaborate with others

— Each person should understand all material
Will help with your course project

Course Project

Final research project

— Work alone or in teams of 2-3

— Your own topic, or from a list we suggest
Schedule

— Talk to me (and others) about project ideas
— 5pm Mon Oct 21: short proposal due
—5pm Tue Jan 14: written report due

— Later that week: short oral presentation

Grading

0% programming assignments
30% class participation

30% paper reviews

40% course project (paper, talk)

To Do

* Next steps
—Join the Piazza site:
https://piazza.com/princeton/fall2013/cos597e/home
— Complete assignment 1 (due Tuesday)
—Read and review 4D and Ethane papers
* Brush up on basic Python programming
— http://docs.python.org/2/tutorial/

— http://www.greenteapress.com/thinkpython/html/
index.html

9/11/13

Review of “How
the Internet Works”

Why Review?

» SDN interacts with “legacy” networks

— Unmodified end-host computers

— Hybrid deployments of SDN

— Connecting to non-SDN domains
« SDN is a reaction to legacy networks

— Challenges of managing and changing them
* General lessons on abstractions

— Practice talking about abstractions

— Some abstractions should be retained

Main ldeas

+ Best-effort packet delivery

* Protocol layering for modularity
— Internet hourglass design

* Relationships between layers
— Naming and addressing
— Directories and routing

+ Scalability
— Through hierarchy and indirection

Best-Effort Packet Switching

Packet switching

— Divide data into packets

— Packets travel separately

— Enables statistical multiplexing

» Best-effort delivery

— Packets may be lost, delayed, out-of-order

— Simplify network design and failure handling
— Build timely, ordered, reliability delivery on top

Layering: Internet Protocol Stack

Application

Applications

Transport | SEE) RS {EE R Messages

W '@ Best-effort global packet delivery

ihT '@ Best-effort local packet delivery

nost Layering: End-to-End host

L I
[o

R : :
Ethernet i [Ethernet SONET | i i[soNET Ethernet | | | Ethernet
interface i | interface interface | : { | interface interface interface
T | T | — [
.] 1
Ethernet frame SONET frame Ethernet frame

9/11/13

Layering: Packet Encapsulation
 Different devices switch different things
— Network layer: packets (routers)
— Link layer: frames (bridges and switches)
— Physical layer: electrical signals (repeaters and hubs)

Application

Frame TCP
Router header header

Bridge, switch

Repeater, hub

Link Layer: Adaptors Communicating

packet link layer protocol pactey
HE [frame}
sending adapter adapter receiving
node node
* Sending side * Receiving side
— Encapsulates packet — Looks for errors, flow
in a frame control, etc.

— Adds error checking
bits, flow control, etc.

— Extracts datagram and
passes to receiving node

Link Layer: Medium Access Control Address

* MAC address (e.g., 00-15-C5-49-04-A9)
— Numerical address used within a link
— Unique, hard-coded in the adapter when it is built
— Flat name space of 48 bits

* Hierarchical allocation
— Blocks: assigned to vendors (e.g., Dell) by the IEEE
— Adapters: assigned by the vendor from its block

* Broadcast address (i.e., FF-FF-FF-FF-FF-FF)
— Send the frame to all adapters

Link Layer: Why Not Just Use IP Addresses?

* Links can support any network protocol

— Not just for IP (e.g., IPX, Appletalk, X.25, ...)

— Different addresses on different kinds of links
* An adapter may move to a new location

— So, cannot simply assign a static IP address

— Instead, must reconfigure the adapter’ s IP address
¢ Must identify the adapter during bootstrap

— Need to talk to the adapter to assign it an IP address

Link Layer: Who am I?
| |

71-65-F7-2B-08-53
22??

1A-2F-BB-76-09-AD
1235
DHCP server

0C-C4-11-6F-E3-98
1236

* Dynamic Host Configuration Protocol (DHCP)
—Broadcast “I need an IP address, please!”
—Response “You can have IP address 1.2.3.4.”

36

Link Layer: Who are You?

TN

1A-2F-BB-76-09-AD
1235

71-65-F7-2B-08-53
1234

0C-C4-11-6F-E3-98
1236

* Address Resolution Protocol (ARP)

—Broadcast “who has IP address 1.2.3.6?”
—Response “0C-C4-11-6F-E3-98 has 1.2.3.6!"

Network Layer: Hierarchical Addressing

* Network and host portions (left and right)
* 12.34.158.0/24 is a 24-bit prefix with 28 addresses

12 34 158 5

b

[00001100]00100010] 10011110 00000101

l | |
I Network (24 bits)

Host (8 bits)

Network Layer: Scalability

* Number related hosts from a common subnet
—1.2.3.0/24 on the left LAN
—5.6.7.0/24 on the right LAN

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

1.2.3.0/24
5.6.7.0/24

in

forwarding table

9/11/13

Network Layer: Connect Local Networks

LAN 1

LAN 2

route!

o
WAN routel WAN routel

* Main challenges
— Scalability
— Autonomy

Network Layer: Address and Mask
Address 12 34 158 5

R

[00001100]00100010] 10011110]00000101]

[iinnnnnn Joennn [t [00000000]

T

Mask 255 255 255 0

Network Layer: Who are You?

root DNS server
—E.g., gaia.cs.umass.edu

2
3
/ TLD DNS server
4
local DNS server

P
dns.poly.edu 5

[g

authoritative DNS server
dns.cs.umass.edu

* Domain Name System
— Hierarchical names

* Scalability
— Hierarchical directory
— Caching of results

* Autonomy

requesting host

— Separate name space cis.poly.edu

— Separate servers

Transport Layer:

. Service request for
Client host 128.2.194.242:80

Two Main Ideas

Demultiplexing: port numbers

Server host 128.2.194.242

9/11/13

Web server
(port 80)

(i.e., the Web server)

Echo server
(port 7)

Error detection: checksums

Ip payload

detect corruption

Transport Layer: User Datagram
Protocol (UDP)

* Datagram messaging service
— Demultiplexing: port numbers
— Detecting corruption: checksum
* Lightweight communication between processes
— Send and receive messages
— Avoid overhead of ordered, reliable delivery

SRC port DST port

checksum length

DATA

Transport Layer: Transmission Control
Protocol (TCP)

Stream-of-bytes service

— Sends and receives a
stream of bytes

Reliable, in-order delivery

— Corruption: checksums

— Detect loss/reordering:
sequence numbers

— Reliable delivery:
acknowledgments and
retransmissions

* Connection oriented
— Explicit set-up and tear-
down of TCP connection
* Flow control
— Prevent overflow of the
receiver’ s buffer space
* Congestion control

— Adapt to network
congestion for the
greater good

Application Layer: HyperText Transfer Protocol

GET /courses/archive/spri2/cos461/ HTTP/1.1
Host: www.cs.princeton.edu

User-Agent: Mozilla/4.03

CRLF

Request

HTTP/1.1 200 OK

Date: Mon, 6 Feb 2012 13:09:03 GMT

Server: Netscape-Enterprise/3.5.1
Last-Modified: Mon, 7 Feb 2011 11:12:23 GMT
Response | content-Length: 21

CRLF

Site under construction

Relationship Between Layers

link
session

‘name

Discovery: Mapping Name to Address

link
session

name

Q

Routing: Mapping Link to Path
link name
’ session ‘

address

path

9/11/13

Names: Different Kinds

* Host name (e.g., www.cs.princeton.edu)
— Mnemonic, variable-length, appreciated by humans
— Hierarchical, based on organizations

* IP address (e.g., 128.112.7.156)
— Numerical 32-bit address appreciated by routers
— Hierarchical, based on organizations and topology

* MAC address (e.g., 00-15-C5-49-04-A9)
— Numerical 48-bit address appreciated by adapters
— Non-hierarchical, unrelated to network topology

Names: Hierarchical Assignment

* Host name: www.cs.princeton.edu
— Domain: registrar for each top-level domain (e.g., .edu)
— Host name: local administrator assigns to each host

* IP addresses: 128.112.7.156
— Prefixes: ICANN, regional Internet registries, and ISPs
— Hosts: static configuration, or dynamic using DHCP

* MAC addresses: 00-15-C5-49-04-A9
— Blocks: assigned to vendors by the IEEE

— Adapters: assigned by the vendor from its block

Directories

* A key-value store
— Key: name, value: address(es)
— Answer queries: given name, return address(es)
* Caching the response
— Reuse the response, for a period of time
— Better performance and lower overhead
* Allow entries to change
— Updating the address(es) associated with a name
— Invalidating or expiring cached responses

Directory Design: Three Extremes

* Flood the query (e.g., ARP)

— The named node responds with its address

— But, high overhead in large networks
* Push data to all clients (/etc/hosts)

— All nodes store a full copy of the directory

— But, high overhead for many names and updates
* Central directory server

— All data and queries handled by one machine

— But, poor performance, scalability, and reliability

53

Directory Design: Distributed Solutions

* Hierarchical directory (e.g., DNS)
— Follow the hierarchy in the name space
— Distribute the directory, distribute the queries
— Enable decentralized updates to the directory
* Distributed Hash Table (e.g. P2P applications)
— Directory as a hash table with flat names
— Each node handles range of hash outputs
— Use hash to direct query to the directory node

9/11/13

Conclusions

+ SDN is exciting
— Great industry traction
Routing — Fresh intellectual space
» For next time
— Join the Piazza site

— Read and review 4D and Ethane papers
— Assignment 1: MiniNet set-up

More Next Time!

10

