COS 597D: Principles of Database and Information Systems

> Transactions and Concurrency Control

Consistency

- · Satisfies declared integrity constraints
- Satisfies semantics of correct execution of actions
 - Example: tuple not specified for deletion is still there after DELETE is executed

3

- Must be able to execute multiple transactions on DB together
 - Multiple users
 - Reservations, billing, banking, ...
 Long transactions
 - Reports, analysis, ...
- Interleave transactions
- Each committed transaction must leave DB in consistent state
- Each aborted transaction must leave DB in state as if it never happened

ACID

Properties of transactions:

- <u>Atomicity</u>: all operations of a transaction are complete at commitment or none are
- <u>Consistency</u>: each transaction in isolation leaves database in consistent state
- <u>Isolation</u>: each transaction "unaware" of other transactions executing concurrently
- **Durability:** changes to database made by committed transactions persist even if system fails.

Database Management System must insure these

Modeling transactions

- · Only reads and writes to DB tables relevant
- Consider actions READ, WRITE, COMMIT, ABORT
- How interleave these actions correctly? – Actions of different transactions can interact
- Around these actions a transaction does local computation: not affect DB
 - Example: comparison for query evaluation

6

		me		\rightarrow
T1: R(V) \	W(V)	R(K)W(K)		С
T2:	R(K)		R(V)	С
T3:	R(V)		R(K)	С
T4:	R(K)R(V)C		
R(object):	read the DB o	bject		
W(object):	write the DB of	object		
C: transact	ion commits			
V represen	ts savings acc	ount		

Equivalence of schedules Two schedule are equivalent if: For any starting state of the DB for both schedules The effect of executing the 1st schedule is identical to the effect of executing the 2nd schedule Effect refers to the state of the DB as well as other results (e.g. a nasty letter that you are overdrawn)

- Need to lock all now and future records
- How?
 - Lock whole file : pages and access COSTLY
 - Predicate locking: lock all records satisfying
 - predicate (e.g. salary > 100K)
 - How?
 - Special case: if only using index to reach records satisfying predicate
 - Lock pages in index which contain or *would contain* data entries to records satisfying predicate

29