
9/16/13

1

COS 597A:
Principles of

Database and Information Systems

Relational model

Relational Database Definitions

1.  A relation is a set of tuples over specified
domains

•  R subset of D1 X D2 X D3 X … Dk (k-ary)
•  Each Di is a declared domain
•  Domains atomic

•  types of programming languages

2.  A relational database is a set of relations and
possibly constraints among the relations

Relational model
 A formal (mathematical) model to represent

•  objects (data/information),
•  relationships between objects
•  Constraints on objects and relationships
•  Queries about information

 Well-founded on mathematical principles :
 Precise semantics of constraints and queries
 Can prove equivalence of different ways to express

queries

Relational Database: Terminology

Schema for a relation:
1.  Relation name
2.  Domain (type) of each component

i.e. declare Di s

Equivalent:
–  Instance of a scheme
–  Table

Term “relation” is used to refer to a schema and a particular
instance – disambiguate by context

Relational Database: More Terminology

Each Di of a schema is referred to as a
 component or attribute or field or column of the schema

Each di of a tuple = (d1, d2, d3, … dk) is referred to as
 component or attribute or field of the tuple

Each tuple of a relation is also referred to as an
element or row of the relation

elements
↓

attributes→

Example

books: (title, ISBN#, edition, date)

publishers: (name, country, address)

authors:
(name, gender, birth date, place of birth, date of
death)

Need declare domains:
e.g. title: string

9/16/13

2

Constraints

Identifying elements

Key: a minimal set of attributes whose values
 uniquely identify each element in a relation

Candidate Key: any key

Primary key: a candidate key defined to be primary
by person who defines relation

Superkey: any set of attributes that contains a
candidate key

Denote primary key by
underlining attributes

books: (title, ISBN#, edition, date)

publishers: (name, country, address)

authors:
(name, gender, birth date, place of birth, date of
death)

Need declare domains:
e.g. title: string

Constraints on elements

•  Declaring a candidate key constrains
values of attributes

•  Example: ISBN# as key
– No book without an ISBN#
– No two books with same ISBN#

But there are relationships
between authors, books and

publishers

How represent?

Our Example

books are published by publishers:

published by: (ISBN#, publisher_name, in print)

books are written by authors:

written by:
(ISBN#, author_name, birth date, place of birth)

9/16/13

3

Alternative

•  If each book must have exactly one publisher,
then:

published by: (isbn#, publisher_name, in print)

•  Instead put info from published_by in books:

books:
(title, isbn#, edition, date, publisher_name, in print)

Null values

What if some books in relation books not
published?

• Want no entry in publisher_name and in print

• Add value null to domain to represent.

• Attributes of candidate keys cannot have null
values.

Foreign keys

•  ISBN# in books is related to the ISBN# in
written by and published by
–  a specific ISBN# value in one relation refers to the

same book as the ISBN# in the other relation

•  name, birth date, place of birth in authors is
related to author_name, birth date, place of birth
in published by

How represent?

Foreign key constraint

•  Specify that a set of attributes in schema for one
relation form a primary key for a specific other
relation
–  “other relation” is referred to or referenced by

first relation

R1: (attrib1, attrib2, attrib3, attrib4, attrib5)

R2: (attrib1, attrib2, attrib3, attrib4)

R1 refers to/references R2

Foreign Keys for Our Example

published by: (isbn#, publisher_name, in print)
isbn# is a foreign key referencing books

Primary key of books understood
Publisher_name is a foreign key referencing
publishers.name

written by:
(isbn#, author_name, birth date, place of birth)

isbn# is a foreign key referencing books;
(author_name, birth date, place of birth) is a
foreign key referencing authors

Enforcing relational constraints

•  Constraints must be satisfied at all times
•  What happens when tuples in relations

change?

•  Action of changing a relation not part of basic
relational model

•  Database language implementing model
enforces

9/16/13

4

Enforcement in SQL

SQL commands changing relations:
INSERT, DELETE, UPDATE

•  Domain constraints
– Don’t allow attribute value not in domain

INSERT or UPDATE fails

•  “Not null” constraints
– Special case of domain constraints

Enforcement in SQL

•  Candidate key constraints
– Can have other candidate keys declared as

well as primary key
– Don’t allow 2nd tuple with same key value

INSERT or UPDATE fails

–  Implicit “not null” for attributes in a key
INSERT or UPDATE fails

Enforcement in SQL

•  Foreign key constraints
Suppose Y denotes a set of attributes of relation B

that reference the primary key of relation A.

– Don’t allow tuple into B if no tuple in A with
matching values for Y

INSERT or UPDATE fails

Enforcement in SQL

Foreign key constraints continued
–  suppose want to remove a tuple in A
–  Suppose there is a tuple in B with matching

values for Y

Choices (in SQL):
1.  Disallow deletion from A

DELETE or UPDATE fails

Enforcement in SQL

Choices (in SQL) continued:
2.  Ripple effect (CASCADE):

–  Remove tuple from A and all tuples from B with
matching values for Y

–  DELETE or UPDATE in A causes DELETE in B

3.  Substitute value
–  Put “null” (if Y not part of candidate key for B) or

other default value for Y in B
–  DELETE or UPDATE in A causes UPDATE in B

Example?

Books: (title, ISBN#, edition, date)

PU branches: (br_name, librarian, hours)

Copies: (ISBN#, copy#, condition, br_name)
br_name not null
isbn# is a foreign key referencing books
br_name is a foreign key referencing PU branches

9/16/13

5

Other Constraints of Interest

•  Domain attribute constraints
– Need to test values of attributes not simply

membership properties in sets
– Example:

Attribute NJ driver: yes/no flag
Attribute age: number
Constraint “if age <17 then NJ driver == “no”

Other Constraints of Interest, cont.

•  Functional constraints
Example:

relation person with 6 attributes:
first name, last name, street address, state,
area code, 7-digit phone number.

Constraint:
if area code of person 1 = area code of person 2
 then state of person 1 = state of person 2

Equivalently, area code determines state

Functional Constraints

General form:

Let A and B be subsets of attributes for a relation
For any tuples ej and ek of the relation:

If the values of attributes in set A for tuple ej equal
 the values of attributes in set A for tuple ek

Then the values of attributes in set B for tuple ej
equal the values of attributes in set B for tuple ek

Functional Constraints Example

More complicated example:

customer relation with 8 attributes:
height, weight, arm length, leg length,
jacket size, pant size, shirt size, color preference

Constraints:
Height, weight, arm length determine shirt size
Height, weight, leg length determine pant size

Enforcing Other Constraints

•  Value-based constraints?
•  General functional constraints?

In relational model:
•  Not expressed in formal relational model
•  Declaring and enforcing these depend on

use of database language
•  Use query semantics to check

