COS 597A:
Principles of
Database and Information Systems

Relational model:
Relational calculus

Modeling access

* Have looked at modeling information as
data + structure

* Now: how model access to data in
relational model?

» Formal specification of access provides:
— Unambiguous queries
— Correctness of results
— Expressiveness of query languages

Queries

» A query is a mapping from a set of relations to a
relation

Query: relations — relation

» Can derive schema of result from schemas of
input relations

» Can deduce constraints on resulting relation that
must hold for any input relations

» Can identify properties of result relation

Relational query languages

« Two formal relational languages to describe mapping
— Relational calculus
» Declarative — describes results of query
— Relational algebra
» Procedural — lists operations to form query result

« Equivalent expressiveness
» Each has strong points for usefulness
— DB system query languages (e.g. SQL)
take best of both

begin with Relational Calculus

* Two forms

— Tuple relational calculus:
variables of formulae range over tuples

— Domain relational calculus:
variables of formulae range over attributes

Tuple Relational Calculus

Queries are formulae, which define sets using:
1. Constants

2. Predicates (like select of algebra)

3. Boolean

4. 3 there exists

5. V forall

Value of an attribute of a tuple T can be referred to in
predicates using T.attribute_name

Example: {T| T € Players T.rank <10 }
|__formula, T free |

Players: (name, rank, team); base relation of database

Formula defines relation

» Free variables in a formula take on the values of
tuples

» Atuple is in the defined relation if and only if
when substituted for a free variable, it satisfies
(makes true) the formula

Free variable:

3x, Vx bind x — truth or falsehood no longer
depends on a specific value of x
If x is not bound it is free

Quantifiers

There exists: 3x (f(x)) for formula f with free
variable x

« Is true if there is some tuple which when substituted
for x makes f true

For all: ¥x (f(x)) for formula f with free variable x
« Is true if any tuple substituted for x makes f true
i.e. all tuples when substituted for x make f true

Example: there exists

{T |3A 3B (A ¢ Players and B ¢ Players and
A.name = T.name and A.rank > B.rank and
B.name = T.name2)}

» T not constrained to be element of a named relation

» Result has attributes defined by naming them in the
formula: T.name, T.name2

- so schema for result: (name, name2)
unordered
* Tuples T in result have values for
(name, name2) that satisfy the formula

* What is the resulting relation?

Example: for all

Relations: for_sale: (house, town)
showing: (client, house)

house foreign key references for_sale
Query: clients who have seen all houses for sale

Try:
{T| VF (F ¢for_sale => 3W (W & showing and
T.client = W.client and W.house=F.house)) }

Shorthand:
{T | VF ¢for_sale 3W ¢ showing
(T.client = W.client and W.house=F.house) }

Problem?

Relations: for_sale:(house, town)

showing:(client, house)
house foreign key references for_sale

Query: clients who have seen all houses for sale

If for_sale empty, “VF (F € for_sale => ...)” is true
Then any tuple T satisfies and result is infinite set

Fix: Adding leading, independent 3 :

{T | 3S € showing (T.client=S.client) and
VF ¢ for_sale 3W € showing
(T.client = W.client and W.house=F.house) }

Now what is result if for_sale is empty?

Formal definition: formula

* A tuple relational calculus formula is

— An atomic formula (uses predicate and constants):
* TeR where
—T is a variable ranging over tuples
—R is a named relation in the database
a base relation
* T.aopW.b where

—aand b are names of attributes of T and W,
respectively,

—opisoneof < > = # <2
« T.a op constant
« constantop T.a

Formal definition: formula cont.

A tuple relational calculus formula is

— An atomic formula
— For any tuple relational calculus

formulae f and g

- ()

* not(f) } _
Boolean operations

«fandg

«forg

e AT(f(T)) for T free in f } Quantified

o YT(f(T))forTfreeinf

Formal definition: query

A query in the relational calculus is a set definition
{TIT)}
where fis a relational calculus formula
T is the only variable free in f

The query defines the relation Result consisting of tuples T
that satisfy f

The attributes of Result are either defined by name in f or
inherited from base relation R by a predicate Te R

Some abbreviations for logic

* (p=>q) equivalent to ((notp) orq)
« vx(f(x)) equiv. to not(ax(not f(x)))

« Ax(f(x)) equiv. to not(wx(not f(x)))

s yxeS (f)equiv.to ¥x((xeS)=>f)
e IxeS(f)equiv.toax((xeS)andf)

—_ =

~ ~—

Board examples

Board Example 1

students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)

jobs: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find SS#, name, and Yr of all students
employees

Board Example 2

students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)

jobs: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find (student, manager) pairs where both are
students - report SS#s

Board Example 2

students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)

jobs: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find names of all CS students working for the
library (library a division)

Board Example 3

students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)

jobs: (position, division, SS#, managerSS$)
study: (SS#, academic_dept., adviser)

Find divisions that have students from all
departments working in them

Interpret “all departments” to be all departments that
appear in jobs.academic_dept.

Evaluating query in calculus

Declarative — how build new relation {x|f(x)}?
» Go through each candidate tuple value for x

« Is f(x) true when substitute candidate value for
free variable x?

« If yes, candidate tuple is in new relation
« If no, candidate tuple is out

What are candidates?
* Do we know domain of x?
* |s domain finite?

Problem

» Consider {T | not (T &€ Winners) }
— Wide open — what is schema for Result?

» Consider {T | VS ((S € Winners) =>
(not (T.name = S.name and

T.year = S.year)))}
— Now Result:(name, year) but universe is infinite

Don’'t want to consider infinite set of values

Constants of a database and query

Want consider only finite set of values
— What are constants in database and query?

Define:
» Let I be an instance of a database

— A specific set of tuples (relation) for each base
relational schema

* Let Q be a relational calculus query

» Domain (I,Q) is the set of all constants in Q or I

+ Let Q(I) denote the relation resulting from
applying Qto I

Safe query

A query Q on a relational database with
base schemas {R} is safe if and only if:

1. for all instances 1 of {R} , any tuple in Q(I)
contains only values in Domain(I, Q)

Means at worst candidates are all tuples can form from
finite set of values in Domain(l, Q)

Safe query: need more

Require testing quantifiers has finite universe:

2. For each IT(p(T)) in the formula of Q,
if p(f) is true for tuple t, then attributes
of t are in Domain(l, Q)

3. For each VT(p(T)) in the formula of Q,
if t is a tuple containing a constant not
in Domain(1,Q), then p(t) is true

=> Only need to test tuples in Domain(L,Q)

Safe query: all conditions

A query Q on a relational database with
base schemas {R}} is safe if and only if:

1. forall instances 1 of {R}, any tuple in Q(I) contains
only values in Domain(I, Q)

2. Foreach 3T(p(T)) in the formula of Q, if p(t) is true for
tuple t, then attributes of t are in Domain(I, Q)

3. Foreach VT(p(T))in the formula of Q, if tis a tuple
containing a constant not in Domain(I,Q), then p(f) is
true

Domain relational calculus

» Similar but variables range over domain values
(i.e. attribute values) not tuples

« Is equivalent to tuple relational calculus when
both restricted to safe expressions

Example:
{<A,B>T | 3R 3S (<A, R> ¢ Players and <B,S> ¢ Players
and R > S)}

A, B range over Players.name
R, S range over Players.rank

Summary

* The relational calculus provides a formal
model based on logical formulae and set
theory

» Schema of result is explicit in expression

» Language of queries is same language
that we use to prove properties: first order
logic.

