
1

COS 597A:
Principles of

Database and Information Systems

Relational model:
Relational calculus

Modeling access

•  Have looked at modeling information as
data + structure

•  Now: how model access to data in
relational model?

•  Formal specification of access provides:
– Unambiguous queries
– Correctness of results
– Expressiveness of query languages

Queries

•  A query is a mapping from a set of relations to a
relation

Query: relations → relation

•  Can derive schema of result from schemas of
input relations

•  Can deduce constraints on resulting relation that
must hold for any input relations

•  Can identify properties of result relation

Relational query languages
•  Two formal relational languages to describe mapping

–  Relational calculus
•  Declarative – describes results of query

–  Relational algebra
•  Procedural – lists operations to form query result

•  Equivalent expressiveness
•  Each has strong points for usefulness

–  DB system query languages (e.g. SQL)
take best of both

begin with Relational Calculus

•  Two forms

– Tuple relational calculus:
variables of formulae range over tuples

– Domain relational calculus:
variables of formulae range over attributes

Tuple Relational Calculus
Queries are formulae, which define sets using:
1.  Constants
2.  Predicates (like select of algebra)
3.  Boolean and, or, not
4.  ∃ there exists
5.  ∀ for all

Value of an attribute of a tuple T can be referred to in
predicates using T.attribute_name

Example: { T | T ε Players and T.rank ≤ 10 }
 |__formula, T free ___________|

Players: (name, rank, team); base relation of database

2

Formula defines relation

•  Free variables in a formula take on the values of
tuples

•  A tuple is in the defined relation if and only if
when substituted for a free variable, it satisfies
(makes true) the formula

Free variable:
∃x, ∀x bind x – truth or falsehood no longer

depends on a specific value of x
If x is not bound it is free

Quantifiers

There exists: ∃x (f(x)) for formula f with free
variable x
•  Is true if there is some tuple which when substituted

for x makes f true

 For all: ∀x (f(x)) for formula f with free variable x
•  Is true if any tuple substituted for x makes f true

 i.e. all tuples when substituted for x make f true

Example: there exists
{T |∃A ∃B (A ε Players and B ε Players and
 A.name = T.name and A.rank > B.rank and
 B.name = T.name2)}

•  T not constrained to be element of a named relation
•  Result has attributes defined by naming them in the

formula: T.name, T.name2
–  so schema for result: (name, name2)

unordered
•  Tuples T in result have values for
 (name, name2) that satisfy the formula

•  What is the resulting relation?

Example: for all
Relations: for_sale: (house, town)

 showing: (client, house)
 house foreign key references for_sale

Query: clients who have seen all houses for sale

Try:
{T | ∀F (F ε for_sale => ∃W (W ε showing and
 T.client = W.client and W.house=F.house)) }

Shorthand:
{T | ∀F ε for_sale ∃W ε showing
 (T.client = W.client and W.house=F.house) }

 Problem?

Relations: for_sale:(house, town)
 showing:(client, house)

 house foreign key references for_sale

Query: clients who have seen all houses for sale

If for_sale empty, “∀F (F ε for_sale => …)” is true
Then any tuple T satisfies and result is infinite set

Fix: Adding leading, independent ∃ :

{T | ∃S ε showing (T.client=S.client) and
 ∀F ε for_sale ∃W ε showing
 (T.client = W.client and W.house=F.house) }

 Now what is result if for_sale is empty?

Formal definition: formula

•  A tuple relational calculus formula is
– An atomic formula (uses predicate and constants):

•  T ε R where
– T is a variable ranging over tuples
– R is a named relation in the database

a base relation
•  T.a op W.b where

– a and b are names of attributes of T and W,
respectively,

– op is one of < > = ≠ ≤ ≥
•  T.a op constant
•  constant op T.a

3

Formal definition: formula cont.

•  A tuple relational calculus formula is
– An atomic formula
– For any tuple relational calculus

formulae f and g
•  (f)
•  not(f)

•  f and g
•  f or g
•  ∃T(f (T)) for T free in f
•  ∀T(f (T)) for T free in f

Boolean operations

Quantified

Formal definition: query

A query in the relational calculus is a set definition
{T | f(T) }

where f is a relational calculus formula
 T is the only variable free in f

The query defines the relation Result consisting of tuples T
that satisfy f

The attributes of Result are either defined by name in f or
inherited from base relation R by a predicate Tε R

Some abbreviations for logic

•  (p => q) equivalent to ((not p) or q)
•  x(f(x)) equiv. to not(x(not f(x)))
•  x(f(x)) equiv. to not(x(not f(x)))
•  x ε S (f) equiv. to x ((x ε S) => f)
•  x ε S (f) equiv. to x ((x ε S) and f)

A A

A

A

E E

E
E

Board examples

Board Example 1
students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)
jobs: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find SS#, name, and Yr of all students
employees

Board Example 2
students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)
jobs: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find (student, manager) pairs where both are
students - report SS#s

4

Board Example 2
students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)
jobs: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find names of all CS students working for the
library (library a division)

Board Example 3
students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)
jobs: (position, division, SS#, managerSS$)
study: (SS#, academic_dept., adviser)

Find divisions that have students from all
departments working in them

Interpret “all departments” to be all departments that
appear in jobs.academic_dept.

Evaluating query in calculus
Declarative – how build new relation {x|f(x)}?
•  Go through each candidate tuple value for x
•  Is f(x) true when substitute candidate value for

free variable x?
•  If yes, candidate tuple is in new relation
•  If no, candidate tuple is out

What are candidates?
•  Do we know domain of x?
•  Is domain finite?

Problem

•  Consider {T | not (T ε Winners) }
–  Wide open – what is schema for Result?

•  Consider {T | ∀S ((S ε Winners) =>
(not (T.name = S.name and

 T.year = S.year))) }
–  Now Result:(name, year) but universe is infinite

Don’t want to consider infinite set of values

Constants of a database and query
Want consider only finite set of values

–  What are constants in database and query?

Define:
•  Let I be an instance of a database

–  A specific set of tuples (relation) for each base
relational schema

•  Let Q be a relational calculus query
•  Domain (I,Q) is the set of all constants in Q or I
•  Let Q(I) denote the relation resulting from

applying Q to I

Safe query

A query Q on a relational database with
base schemas {Ri} is safe if and only if:

1.  for all instances I of {Ri} , any tuple in Q(I)
contains only values in Domain(I, Q)

Means at worst candidates are all tuples can form from
finite set of values in Domain(I, Q)

5

Safe query: need more
Require testing quantifiers has finite universe:

2.  For each ∃T(p(T)) in the formula of Q,
if p(t) is true for tuple t, then attributes
of t are in Domain(I, Q)

3.  For each ∀T(p(T)) in the formula of Q,
if t is a tuple containing a constant not
in Domain(I,Q), then p(t) is true

=> Only need to test tuples in Domain(I,Q)

Safe query: all conditions
A query Q on a relational database with
base schemas {Ri} is safe if and only if:

1.  for all instances I of {Ri} , any tuple in Q(I) contains
only values in Domain(I, Q)

2.  For each ∃T(p(T)) in the formula of Q, if p(t) is true for
tuple t, then attributes of t are in Domain(I, Q)

3.  For each ∀T(p(T)) in the formula of Q, if t is a tuple
containing a constant not in Domain(I,Q), then p(t) is
true

Domain relational calculus
•  Similar but variables range over domain values

(i.e. attribute values) not tuples
•  Is equivalent to tuple relational calculus when

both restricted to safe expressions

Example:
{<A,B>T | ∃R ∃S (<A, R> ε Players and <B,S> ε Players

and R > S)}

A, B range over Players.name
R, S range over Players.rank

Summary

•  The relational calculus provides a formal
model based on logical formulae and set
theory

•  Schema of result is explicit in expression
•  Language of queries is same language

that we use to prove properties: first order
logic.

