COS 597A: Principles of **Database and Information Systems**

Relational model: Relational algebra

Relational Algebra

Basic operations of relational algebra:

- Selection σ :select a subset of tuples from a relation according to a condition
- Projection π :delete unwanted attributes (columns) from tuples of a relation
- cross product X : combine all pairs of tuples of two relations by making tuples with all attributes of both
- Set difference -: * tuples in first relation and not in
- union U:* tuples in first relation or second relation
- Renaming p: to deal with name conflicts
- * Set operations: $D_1 \times D_2 \dots \times D_k$ of two relations must agree

Selection $\sigma_P(R)$

- relation R
- · predicate P on attributes of R
- resulting relation
 - schema same as R
 - contains those tuples of R that satisfy P
 - candidate keys and foreign keys in R are preserved
 - · eliminating tuples doesn't cause violations

Selection Example

Students: (name, address, gender, age, grad yr)

Instance:

name	address	gender	age	grad yr
Joe	NY	М	24	2
Sally		F	25	3
Joe	NJ	М	23	2
Jan		F	27	4

σ_{age < 25} (Students): (<u>name, address</u>, gender, age, grad yr)

otadonto). (<u>namo, address</u> , gender, ago, s				
name	address	gender	age	grad yr
Joe	NY	М	24	2
Joe	NJ	М	23	2

Projection $\pi_s(R)$

- · relation R
- S a list of attributes from R projected attributes
- · resulting relation:
 - scheme is attributes in S
 - contains all tuples formed by taking a tuple from R and keeping only the attributes listed in S
 - relations are sets ⇒ duplicates are removed
 - · In practice, usually not removed unless explicitly requested
 - candidate keys? foreign

Projection $\pi_s(R)$

- · relation R
- S a list of attributes from R projected attributes
- resulting relation:
 - scheme is attributes in S
 - contains all tuples formed by taking a tuple from R and keeping only the attributes listed in S
 - relations are sets ⇒ duplicates are removed
 - · In practice, usually not removed unless explicitly requested
 - − if { candidate key projected, constraint preserved foreign
 - if no candidate key is projected,
 - only candidate key may be all attributes in S
 - · (set model)

Projection Example

Students: (<u>name</u>, <u>address</u>, gender, age, grad yr) Instance:

name	<u>addr</u>	gender	age	grad yr
Joe	NY	М	24	2
Sally		F	25	3
Joe	NJ	М	23	2
Jan		F	27	4

 $\pi_{\text{name, grad yr}}(Students)$: (name, grad yr)

name	grad yr
Joe	2
Sally	3
Jan	4

Composing operators

- · An algebra
 - composition works as in other algebras
 - are properties to use to re-order operations
- Example
- $\pi_{\text{name, age}}$ ($\sigma_{\text{age < 25}}$ (Students)):

name	<u>age</u>
Joe	24
Joe	23

 $\sigma_{\text{age} < 25} (\pi_{\text{name, age}} (\text{Students}))$?

Set operations

- for relations R, $S \subseteq D_1 \times D_2 \times ... \times D_k$
 - where D_i is the domain for the ith attribute
 - i.e. R and S on same universe
- Union $RUS \subseteq D_1 X D_2 X ... X D_k$:
 - contains any tuple in either R or S
 - formal model removes duplicates
 - candidate keys?
 - foreign keys?
- Set difference $R-S \subseteq D_1 \times D_2 \times ... \times D_k$:
 - includes all tuples in R that are not in S
 - constraints left as an exercise

Example for Union

· relations:

mayors: (name, street address, <u>city</u>, term, party) legislators: (name, street address, city, <u>district</u>, party)

mayors U legislators?

If "term", "district" both integers

⇒ same domain ⇒ can union

candidate key of mayors U legislators?

Example for Union

· relations:

mayors: (name, street address, <u>city</u>, term, party) legislators: (name, street address, <u>city</u>, <u>district</u>, party)

> candidate key of mayors U legislators?

not (city, district)

((Joe Smith, 9 Main St., Kingston, 1, democrat)
Joe is mayor of Kingston in his first term
(Sally Jones, 11 River Rd., Kingston, 1, republican)
Sally is the legislator from the first district and lives in Kingston

➤ foreign key of mayors U legislators?

Candidate Keys for union

If both R and S have same candidate key?

Generally, one key value determines two tuples – one from S and one from R.

Example: gs_alum: (<u>ss#</u>, dept)

ugrad_alum: (ss#, dept)

ss# of alum who was both ugrad and grad but in different

departments will appear in two tuples of

gs_alum **U** ugrad_alum

Cross product R X T

- Relations
 - $-\;\mathsf{R}\subseteq\mathsf{D}_1\;\mathsf{X}\;\mathsf{D}_2\;\mathsf{X}\quad\ldots\quad\mathsf{X}\;\mathsf{D}_k$
 - $\ T \subseteq \ S_1 \ X \ S_2 \ X \ \dots \ X \ S_m$
- · Resulting relation:
 - $-RXT\subseteq D_1XD_2X...XD_kXS_1XS_2X...XS_m$
 - tuple (d $_1$, d $_2$,... , d $_k$, s $_1$, s $_2$, ... , s $_m$) ϵ R X T if and only if
 - $(d_1, d_2, \dots, d_k) \in R$ and $(s_1, s_2, \dots, s_m) \in T$
 - |R X T| ? |R| denotes the number of tuples in R
 - candidate keys?
 - foreign keys?

Cross product R X T: keys

- · Resulting relation:
 - $\begin{array}{l} \ R \ X \ T \subseteq D_1 \ X \ D_2 \ X \ ... \ X \ D_k \ X \ S_1 \ X \ S_2 \ X \ ... \ X \ S_m \\ \ tuple \ (d_1 \ , d_2 \ ,... \ , d_k \ , s_1 \ , s_2 \ , \ ... \ , s_m) \ \epsilon \ R \ X \ T \end{array}$
 - if and only if $(d_1, d_2, \dots, d_k) \in R$ and $(s_1, s_2, \dots, s_m) \in T$
 - $|R \times T| = |R|^*|T|$
- ➤ candidate keys:
 - $\begin{cases} (d_{i1},\,d_{i2},\,\dots \overset{\cdot}{d}_{i\alpha}\,) \text{ candidate key for R} \\ (\,s_{j1},\,s_{j2},\,\dots\,s_{j\beta}\,) \text{ candidate key for T} \end{cases}$
 - the union of the attributes form a candidate key for R X T positions i1, i2, ... iα, k+j1, k+j2 ... k+jβ of R X T
- foreign keys: for each of R and T are preserved using corresponding attributes of RXT.

Naming attributes

- · Usually give attributes names
 - SS#, city, age, ...
- For cross-product R X T, may have duplicate attribute names
 - use positions in tuples to identify attributes
 - alternative naming: R.d, and T.s,
 - Mayors.city, Legislators.city
- · What if R X R?
 - use positions of resulting tuples
 - rename one of the copies of R

Renaming $\rho(Q(L), E)$

- E a relational algebra expression
- · Q a new relation name
- L is a list of mappings of attributes of E:
 - mapping (old name → new name)
 - mapping (attribute position → new name)
- resulting relation named Q
 - is relation expressed by E
 - attributes renamed according to mappings in list L
 - Q can be omitted; L can be empty
- All constraints on relation expressed by E are preserved with appropriate renaming of attributes.

Using cross-product and renaming

- · Cross-product allows coordination
- Example

```
S: (<u>stulD</u>, name) R: (<u>stulD</u>, room#) find relation giving (name, room#) pairs:
```

combine: SXR

coordinate: $\sigma_{S.stuID = R.stuID}(S X R)$

get result: $\pi_{S.name, R.room\#} (\sigma_{S.stuID = R.stuID}(S X R))$

find pairs of names of roommates?

What does this expression find?

Given relation R containing attribute value

 $\pi_{\textit{value}}\left(\text{R}\right) - \pi_{\text{R.value}}\left(\sigma_{\text{R.value}} <_{\text{Q.value}}\left(\text{R X } \rho(\text{Q,R})\right)\right)$

[From Silberchatz et. al. Section 6.1.1.7]

Formal definition

- · A relational expression is
 - A relation R in the database
 - A constant relation
 - For any relational expressions E₁ and E₂
 - E₁ U E₂ E₁ E₂ E₁ X E₂

 - σ_P (E₁) for predicate P on attributes of E₁
 π_S(E₁) where S is a subset of attributes of E₁

 - ρ(Q(L),E₁) where Q is a new relation name and L is a list of (old name → new name) mappings of attributes of E₁
- · A query in the relational algebra is a relational expression

Relating algebra to calculus

· How do projection in calculus?

```
\pi_{\text{name},\text{year}} \, (\text{Winners})
         becomes
T | 3W (W ε Winners AND
```

T.name = W.name AND T.year = W.year)

Relational algebra: derived operations

- · operations can be expressed as compositions of fundamental operations
- operations represent common patterns
- · operations are very useful for clarity

Intersection R n T

· direct from set theory

$$R \cap T = R - (R - T)$$

· example

students: (SS#, name, PUaddr, homeAddr, Yr) employees: (SS#, name, addr, startYr) find student employees

 $\pi_{SS\#, name, PUaddr}(students) \cap \pi_{SS\#, name, addr}(employees)$

 $\pi_{\text{SS\#, name}}(\text{students}) \cap \pi_{\text{SS\#, name}}(\text{employees})$

 $\pi_{SS\#}(students) \cap \pi_{SS\#}(employees) \leftarrow safest$ or ...

Natural Join R ◊◊ T: motivation

- Relations R and T
- · Captures paradigm: combine: RXT coordinate: $\sigma_P(R X T)$ get result: $\pi_s(\sigma_P(R X T))$
- · For relations that have one or more attributes that share name and domain
- Need to refer to attributes shared by identical name
- students: (SS#, name, PUaddr, homeAddr, classYr) employees: (SS#, name, addr, startYr)

Natural Join R ◊◊ T: definition

Let $\alpha(R)$ = the set of names of attributes in the schema for R Example: α(Students) = {SS#, name, PUaddr, homeAddr, classYr}

Let $\alpha(T)$ = the set of names of attributes in the schema for T Example: α(Employees) = {SS#, name, addr, startYr}

Let $\alpha(R) \cap \alpha(T) = \{a_1, a_2, ..., a_k\}$ • Example: $\alpha(Students) \cap \alpha(Employees) = \{SS\#, name\}$

 $\mathsf{R} \lozenge \lozenge \mathsf{T} = \pi_{\alpha(\mathsf{R}) \; \mathsf{U} \; (\alpha(\mathsf{T}) \cdot \alpha(\mathsf{R}))} \left(\sigma_{\mathsf{R}.\mathsf{a}_1 = \mathsf{T}.\mathsf{a}_1, \; \dots, \; \mathsf{R}.\mathsf{a}_k = \mathsf{T}.\mathsf{a}_k} \; \left(\mathsf{R} \; \mathsf{X} \; \mathsf{T} \right) \right)$

Students ◊◊ Employees

scheme: (SS#, name, PUaddr, homeAddr, classYr, addr, startYr) Student tuple and Employee tuple agree on values of SS#, name

fill in values of the other attributes of the pair

Division R÷Q – motivation

- Suggested by inverse of cross-product (R÷Q) X Q ⊆ R but may not equal R
- Find fragments of tuples of R that appear in R paired with all tuples of Q
- · Example: database of tennis
 - relation Winners: (name, tournament, year)
 - find all players who have won all tournaments represented in the Winners relation

Division R÷Q – definition

Given relations Q and R with attribute sets $\alpha(Q)$ and $\alpha(R),$ Such that

- $-\alpha(Q)$ is a proper subset of $\alpha(R)$
- corresponding attributes in $\alpha(R)\cap\alpha(Q)$ are on the same domain

Define

- R÷Q is a relation with attribute set α(R÷Q) = α(R) α(Q)
- A tuple is in R ÷ Q exactly when combining (concatenating) it with every tuple in Q yields a tuple in R
 - R ÷ Q is a subset of $\pi_{\alpha(R)-\alpha(Q)}(R)$
 - not necessarily =
 - attribute order not maintained => using names to identify attributes

Division R÷Q - example

relation Winners: (name, tournament, year) find all players who have won **all** tournaments represented in the Winners relation

- 1. all tournaments: $\pi_{\text{tournament}}(\text{Winners})$
- 2. divide into something

Try winners ÷ $\pi_{tournament}$ (Winners) : ?

Division R÷Q - example

relation Winners: (name, tournament, year)

find all players who have won **all** tournaments represented in the Winners relation

- 1. all tournaments: π_{tournament}(Winners)
- divide into something

winners ÷ π_{tournament}(Winners) : (name, year)

if tournaments are {US, French, Australian} need

(S.Williams, US, 2008)

(S.Williams, French, 2008)

(S.Williams, Australian, 2008)

to get S.Willaims as a result and result tuple is (S.Willaims, 2008)

⇒ get win all tournaments in same year

next try?

Division R÷Q - example

relation Winners: (name, tournament, year)

find all players who have won **all** tournaments represented in the Winners relation

- 1. all tournaments: $\pi_{tournament}(Winners)$
- 2. divide into $\pi_{name,tournament}$ (Winners) : (name, tournament)

 $\pi_{\text{ name,tournament}}(\text{Winners}) \div \pi_{\text{tournament}}(\text{Winners}) : (\text{name})$

Gives desired result

Division R÷Q – how derive

R ÷ Q is expressed with basic relational operations as $\pi_{\alpha(R)-\alpha(Q)}(R) - \pi_{\alpha(R)-\alpha(Q)}(\ (\ \pi_{\alpha(R)-\alpha(Q)}(R)\ X\ Q\) - R\)$

- R ÷ Q is a subset of $\pi_{\alpha(R)-\alpha(Q)}(R)$
- what's in $\pi_{\alpha(R)-\alpha(Q)}(R)$ and **not in** R ÷ Q ?
 - a tuple that can't be combined with every tuple in Q to get a tuple in R
 - \Rightarrow a combined tuple of $\pi_{\alpha(R)-\alpha(Q)}$ (R) X Q that isn't in R
 - \Rightarrow a tuple of $\pi_{\alpha(R)\,\text{-}\,\alpha(Q)}$ (($\,\pi_{\alpha(R)\,\text{-}\,\alpha(Q)}\,(R)\,X\,Q\,)\,\text{-}\,R$)

Board Example 1

students: (<u>SS#</u>, name, PUaddr, homeAddr, Yr) employees: (<u>SS#</u>, name, addr, startYr) jobs: (<u>position</u>, division, SS#, managerSS#) study: (<u>SS#</u>, academic_dept., adviser)

saw find student employees:

 $\pi_{SS\#}(students) \cap \pi_{SS\#}(employees) \leftarrow safest$

now: find SS#, name, and Yr of all student employees

Board Example 2

students: (<u>SS#</u>, name, PUaddr, homeAddr, classYr) employees: (<u>SS#</u>, name, addr, startYr) jobs: (<u>position</u>, division, SS#, managerSS#) study: (SS#, academic_dept., adviser)

find *names* of all CS students working for the library (library a division)

Board Example 3

students: (<u>SS#</u>, name, PUaddr, homeAddr, Yr) employees: (<u>SS#</u>, name, addr, startYr) jobs: (<u>position</u>, division, SS#, managerSS#) study: (<u>SS#</u>, academic_dept., adviser)

Find divisions that have students from all departments working in them

Interpret "all departments" to be all departments that appear in jobs.academic_dept.

Relational algebra: extended operations

- operations cannot be expressed as compositions of fundamental operations
- operations allow arithmetic, counting, grouping, and extending relations
- part of database system language
 postpone to SQL discussion

Equivalence Algebra and Calculus

The relational algebra and the tuple relational calculus **over safe queries** are equivalent in expressiveness

Codd's Relational Completeness of Data Base Sublanguages

- · In your opinion, what are the important ideas?
- What do you think is the most conceptually difficult aspect of the reduction?

Summary

- Relational algebra provides operational model
- Formal semantics expressible as relational calculus first order logic.
- Operational definitions allow for provably correct simplifications, optimizations for query evaluation
- Functional dependences may be more obvious
- Relational Algebra and Relational Calculus together provide foundation of query languages for database systems
 - that SQL borrows from both