COS 597A:
Principles of
Database and Information Systems

Relational model:
Relational algebra

Relational Algebra

Basic operations of relational algebra:

1. Selection o :select a subset of tuples from a relation
according to a condition

2. Projection 1 :delete unwanted attributes (columns)
from tuples of a relation

3. cross product X : combine all pairs of tuples of two
relations by making tuples with all attributes of both

4. Set difference — :* tuples in first relation and not in
second

5. union U:* tuples in first relation or second relation
6. Renaming p: to deal with name conflicts

* Set operations: D; X D, ... X Dy of two relations must agree

Selection op(R)

* relation R
« predicate P on attributes of R
* resulting relation
—schema same as R
— contains those tuples of R that satisfy P

— candidate keys and foreign keys in R are
preserved
« eliminating tuples doesn’t cause violations

Selection Example

Students: (name, address, gender, age, grad yr)

Instance: name address |gender |age grad yr
Joe ... NY [M 24 2
Sally F 25 3
Joe .. NJ|M 23 2
Jan F 27 4

Oage < 25 (Students): (name, address, gender, age, grad yr)

name address |gender |age grad yr
Joe .. NY|M 24 2
Joe .. NJ|M 23 2

Projection 11g(R)

« relation R
» S alist of attributes from R - projected attributes
* resulting relation:

— scheme is attributes in S

— contains all tuples formed by taking a tuple from R
and keeping only the attributes listed in S
— relations are sets = duplicates are removed

* In practice, usually not removed unless explicitly
requested

_ canghdate keys?
foreign

Projection 11g(R)

« relation R
» S a list of attributes from R - projected attributes
« resulting relation:

— scheme is attributes in S

— contains all tuples formed by taking a tuple from R
and keeping only the attributes listed in S
— relations are sets = duplicates are removed
« In practice, usually not removed unless explicitly requested

— if {fc:rr;(iigi;ate key projected, constraint preserved

— if no candidate key is projected,

only candidate key may be all attributes in S
* (set model)

9/25/13

Projection Example

Students: (hame, address, gender, age, grad yr)
Instance:

name |addr gender |age |grad yr
Joe ..NY |M 24 |2
Sally F 25 |3
Joe .. NJ |M 23 |2
Jan F 27 |4
name |grad yr
Trname, grad yr(StUdentS): (name, grad yr) Joe |2
Sally |3
Jan |4

Composing operators

* An algebra
— composition works as in other algebras
— are properties to use to re-order operations

+ Example

* Thame, age (oage<25 (StUdentS)): name | age
Joe |24
Joe |23

cage <25 (Trname, age (StUdentS))?

Set operations

for relations R, S C Dy XD, X ... X Dy

— where D, is the domain for the it attribute
—i.e. Rand S on same universe

* Union RUSC D, XD, X...XDg

— contains any tuple in either R or S

— formal model removes duplicates

— candidate keys ?

— foreign keys?

« Setdifference R-SC D; XD, X ... XDy:
- includes all tuples in R that are not in S
— constraints left as an exercise

Example for Union

« relations:
mayors: (name, street address, city, term, party)
legislators: (name, street address, city, district, party)

mayors U legislators ?

If “term”, “district” both integers
= same domain = can union

candidate key of mayors U legislators?

Example for Union

* relations:

mayors: (name, street address, city, term, party)
legislators: (name, street address, city, district, party)

> candidate key of mayors U legislators?

not (city, district)
(Joe Smith, 9 Main St., Kingston, 1, democrat)
Joe is mayor of Kingston in his first term
(Sally Jones, 11 River Rd., Kingston, 1, republican)
Sally is the legislator from the first district and lives in Kingston

> foreign key of mayors U legislators?

Candidate Keys for union

If both R and S have same candidate key?

Generally, one key value determines two tuples —
one from S and one from R.

Example: gs_alum: (ss#, dept)
ugrad_alum: (ss#, dept)
ss# of alum who was both ugrad and grad but in different
departments will appear in two tuples of
gs_alum U ugrad_alum

9/25/13

Cross product RX T

* Relations
—-RCD;XD,X ... XDy
-TC S; XS, X ... XS,

» Resulting relation:
—~RXTCD,XD,X...XD, XS, XS, X... XS,
—tuple (d;,dy,... ,de,S;,8,,...,8,)ERXT

if and only if

(dy,dy,...,d)eRand (sy, 8, ... ,5,) €T
— |RXT| ? |R|denotes the number of tuples in R
— candidate keys?
— foreign keys?

Cross product RX T: keys

* Resulting relation:
— RXTCD;XD,X...XD XS, XS, X ... XS,
— tuple (dy,dy,...,d,S1,S,...,5,) ERXT

if and only if
(dy,dy,...,d¢)eRand (sy,8p ..., Sy) €T
— [RXT| = [RJ"[T]

> candidate keys:
diy, dip, ... dig) candidate key for R

(
d(Sjt, S, -+ Sjg) candidate key for T

the union of the attributes form a candidate key for R X T
— positions i1, i2, ... ia, k+j1, k+j2 ... k+jB of RXT
> foreign keys: for each of R and T are preserved using
corresponding attributes of RXT.

Naming attributes

» Usually give attributes names
— SSH#, city, age, ...
» For cross-product R X T, may have
duplicate attribute names
— use positions in tuples to identify attributes
— alternative naming: R.d; and T.s;
» Mayors.city, Legislators.city

* What if R X R?
— use positions of resulting tuples
—rename one of the copies of R

Renaming p(Q(L), E)

» E arelational algebra expression
* Q a new relation name
» L is a list of mappings of attributes of E:
— mapping (old name — new name)
— mapping (attribute position — new name)
* resulting relation named Q
— is relation expressed by E
— attributes renamed according to mappings in list L
— Q can be omitted; L can be empty
All constraints on relation expressed by E are

preserved with appropriate renaming of attributes.

Using cross-product and renaming
» Cross-product allows coordination

» Example
S: (stulD, name) R: (stulD, room#)
find relation giving (name, room#) pairs:
combine: S XR
coordinate: Og gyip - R stuin(S X R)
get result: TS name, R.room# (OS stulD =R stulD(S X R))

find pairs of names of roommates ?

What does this expression find?

Given relation R containing attribute value

Myaie (R) = TR value (OR.value <Q.value (R X p(Q,R)))

[From Silberchatz et. al. Section 6.1.1.7]

9/25/13

Formal definition

« A relational expression is

— Arelation R in the database

— A constant relation

— For any relational expressions E; and E,
« E,UE,
« E,-E,
« E,XE,
* 0 (E,) for predicate P on attributes of E,
« mg(E,) where S is a subset of attributes of E;
* p(Q(L),E;) where Q is a new relation name and L is a list of

(old name — new name) mappings of attributes of E,

« A query in the relational algebra is
a relational expression

Relating algebra to calculus

« How do projection in calculus?
T hame,year (Winners)

becomes
{T| 3W (W £ Winners AND

T.name = W.name AND
T.year = W.year) }

Relational algebra:
derived operations

» operations can be expressed as
compositions of fundamental operations

 operations represent common patterns

« operations are very useful for clarity

Intersection Rn T

« direct from set theory
RNT=R-(R-T)

* example
students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)
find student employees:
TTSS#, name, PUaddr(StUdentS) n TTSS#, name, addr(empk)yees)
or
Tiss#, name(Students) N Tsgy name(€Mployees)
or
Tiggy(Students) N ggy(employees) « safest
or...

Natural Join R 00 T: motivation

* Relations Rand T

» Captures paradigm:
combine: RXT
coordinate: op(R X T)
getresult: 15 (0p(RXT))

» For relations that have one or more attributes that
share name and domain
» Need to refer to attributes shared by identicalny

v

* Example:
students: (SS#, name \PUaddr, homeAddr, classYr)
(SS#, name)addr, startYr)

employees;

Natural Join R 00 T: definition

Let a(R) = the set of names of attributes in the schema for R
« Example: a(Students) = {SS#, name, PUaddr, homeAddr, classYr}

Let a(T) = the set of names of attributes in the schema for T
« Example: a(Employees) = {SS#, name, addr, startYr}

Leta(R) Na(T)={ay, a,, ..., a}
« Example: a(Students) N a(Employees) = {SS#, name}

ROOT =Ty u @mra®) (Fracta, . raera, (RXT)

« Students 00 Employees
scheme: (SS#, name, PUaddr, homeAddr, classYr, addr, startYr)
Student tuple and Employee tuple agree on values of SS#, name
=>tuple in join
fillin values of the other attributes of the pair

9/25/13

Division R+Q — motivation

Suggested by inverse of cross-product
(R+Q) X Q € R but may not equal R

Find fragments of tuples of R that appear in R
paired with all tuples of Q

+ Example: database of tennis
— relation Winners: (name, tournament, year)

— find all players who have won all tournaments
represented in the Winners relation

Division R+Q — definition

Given relations Q and R with attribute sets a(Q) and a(R),
Such that

— a(Q) is a proper subset of a(R)
— corresponding attributes in a(R)Na(Q) are on the same domain

Define

* R+Q s a relation with attribute set a(R+Q) = a

-a(Q)
« Atupleisin R + Q exactly when combining (
it with every tuple in Q yields a tuple in R
— R+ Qis asubset of T 4g) . q(q)(R)
+ not necessarily =

— attribute order not maintained => using names to identify attributes

Division R+Q — example

relation Winners: (name, tournament, year)

find all players who have won all tournaments
represented in the Winners relation

1. all tournaments: Ty, mament(VWinners)
2. divide into something

Try winners + T, amen(Winners) : ?

Division R+Q — example

relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in
the Winners relation
1. all tournaments: g, mamen(Winners)
2. divide into something
winners + Ty nament(Winners) : - (name, year)
if tournaments are {US, French, Australian} need
(S.Williams, US, 2008)
(S.Williams, French, 2008)
(S.Williams, Australian, 2008)
to get S.Willaims as a result
and result tuple is (S.Willaims, 2008)
= get win all tournaments in same year
next try?

Division R+Q — example

relation Winners: (name, tournament, year)

find all players who have won all tournaments represented in
the Winners relation

1. all tournaments: Ty, mamen(Winners)

2. divide into TT 46 tournament(WWinners) : - (name, tournament)

T hame tournament(WiNNErs) * T, mamen(Winners) : (name)

Gives desired result

Division R+Q — how derive

R + Q is expressed with basic relational operations as
"u(R)-a(Q)(R) - Tra(R)-u(Q)((Ty(R) - a(Q) (R)XQ)-R)

* R+ Qis asubset of T ,g) . 4(q)(R)
* what's in T g _4q(R) and notin R+ Q ?

—a tuple that can’t be combined with every tuple in Q
to getatuplein R

=> a combined tuple of g, . 4q) (R) X Q thatisn'tin R
= a tuple of Tyg)_gq) ((TaR)-a@) (R XQ)-R)

9/25/13

Board Example 1

students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)

jobs: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

saw find student employees:
Trgsy(students) N Tggu(employees) <« safest

now: find SS#, name, and Yr of all student
employees

Board Example 2

students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)

jobs: (position, division, SS#, managerSS#)

study: (SS#, academic_dept., adviser)

find names of all CS students working for the
library (library a division)

Board Example 3

students: (SS#, name, PUaddr, homeAddr, Yr)
employees: (SS#, name, addr, startYr)

jobs: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

Find divisions that have students from all
departments working in them

Interpret “all departments” to be all departments that
appear in jobs.academic_dept.

Relational algebra:
extended operations

operations cannot be expressed as compositions
of fundamental operations

operations allow arithmetic, counting, grouping,
and extending relations

part of database system language
— postpone to SQL discussion

Equivalence Algebra and Calculus

The relational algebra and

the tuple relational calculus
over safe queries

are equivalent in expressiveness

Codd's

« In your opinion, what are the important ideas?

* What do you think is the most conceptually
difficult aspect of the reduction?

9/25/13

Summary

Relational algebra provides operational model
Formal semantics expressible as relational
calculus — first order logic.

Operational definitions allow for provably correct
simplifications, optimizations for query evaluation
Functional dependences may be more obvious
Relational Algebra and Relational Calculus
together provide foundation of query languages
for database systems

— that SQL borrows from both

9/25/13

