COS 597D:

Principles of Database and Information Systems

Professor Andrea LaPaugh

Traditional database system?

- · Large integrated collection of data
- Uniform access/modifcation mechanisms
- Model of data organization
- · Can relax in various ways

Relational Model

- · Dominant DB model
 - Fully structured: informally, collection of tables
 - Formal underpinnings
 - SQL most widely used DB language
- Historical staying power
- Introduced 1970 by Edgar Codd What his motivations?- next time! How do they compare to modern concerns?
- Flat model
- vs older hierarchical and newer XML tree models

Other Current Database Models Entity relationship model External "information" view conceptual "NoSQL" Key-value(s) model Unstructured value(s) various types value 1 bit string variable number columns XML model

XML model Semi-structured versus fully structured

- Hierarchical

Levels of Abstraction

- 1. Logical (e.g. relational) model
- 2. Data organization
 - indexing
- 3. Physical model
 - File organization
 - File storage
 - Determines access and manipulation methods

Why study?

- importance of data in our lives
 - ubiquitous
 - huge volume
 - 2.5 exabytes of "high velocity" data created per day (source IBM "Big Data" Web page)
 - social media, sensors, video, transaction records ...
 - 2.8 zetabytes of "global data" 2012
 - (source BBC Future June 21, 2013)
- importance of techniques developed

ISSUES?

Our syllubus: Models

- Structured Database model
 - relational model
 - Algebra, calculus and SQL
 - complex data relationships and constraints
- Unstructured data
 - "NoSQL" models
 - "Big Data": Information Retrieval
- Semi-structured data
 - XML and the tree model
 - bridging database systems and IR systems

Our syllubus: Storing & Retrieving

- File Organization
- Access Methods

 indexing
 Disk
- Distributed Storage
- Query Evaluation
- relational query evaluation methods
- Highly-parallel query evaluation
- MapReduce
- •

Our syllubus: Maintaining

- Correctness
 - concurrency & ACID properties
 consistency for distributed stores
- Fault tolerance
 - crash recovery
 - logging
 - distributed replication

Our syllabus: Specialized Databases (if time)

- Examples

 graph data
 - streaming data

Our syllubus: Current Research Student Presentations

- · advances in fundamentals and applications
- any aspect of data/information storage and use

Graduate Focus

- Emphasize fundamental models and methods
 - expressiveness of languages
 - relationships through constraints
 - effectiveness and efficiency
- De-emphasize how use standard DB systems

 still opportunity to do so

Graduate Focus

- Explore interaction with "other" research areas
 - research techniques applied to database/info systems
 - · example: advanced data structures
 - example: caching in information systems
 - database/info system concepts applied to research
 - example: how integrate heterogeneous data sets in genomics
 - example: how structure data for network monitoring

Course logistics- overview

- Web page has all: READ!! http://www.cs.princeton.edu/courses/archive/fall13/cos597D/
- · Texts
 - Required: Database Management Systems by Ramakrishnan and Gehrke, 3rd Ed., McGraw-Hill, 2003
 - reserved books in library
- online readings

· Graded work

- Written exercises and questions on primary source reading about 10 of these (approx. 15%)
- Class Participation (approx. 15%)
- Oral presentations (approx. 20%)
- Design Project (approx. 50%)

3