
1

1

COS 597A:
Principles of

Database and Information Systems

Dynamic indexing structures

2

Last time
•  File = a collection of (pages of) records
•  File organizations:

–  two issues
how records assigned pages
•  how pages put on disk

–  3 organizations
•  Heap: linked list (or directory) of pages
•  Sorted sequentially stored pages
•  Hashing: records in pages of buckets

•  Indexing for more efficient retrieval
–  two types

•  index search key matches file organization
•  index organization independent of file organization

Search Tree Recap

•  Motivation: get log(# file pages) search
cost without needing sequential file for
data or index

•  Design strategy:
– high fanout tree => shallow tree
– each node fits in one file page

•  Static versus dynamic
3 4

Dynamic Trees

•  Tree changes to keep balance as file grows/
shrinks

•  Tree height: longest path root to leaf

•  N data entries
–  clustered index: page of data file
–  unclusterd index: page of (value, record pointer) pairs

•  Want tree height proportional to logN always

5

B+ Trees
•  Most widely used dynamic tree as index
•  Most widely used index

•  Properties
–  Data entries only in leaves

•  Compare B-trees
–  One page per tree node, including leaves
–  All leaves same distance from root => balanced
–  Leaves doubly linked

•  Gives sorted data entries
–  Call search key of tree “B+ key”

6

B+ trees continued
•  To achieve equal distance all leaves to root

cannot have fixed fanout
•  To keep height low, need fanout high

–  Want interior nodes full
•  Parameter d - order of the B+ tree
•  Each interior node except root has m keys for

d≤m≤2d
–  m+1 children

•  The root has m keys for 1≤m≤2d
–  Tree height grows/shrinks by adding/removing root

•  d chosen so each interior node fits in one page

2

7

root

B+
Tree

Interior index nodes

…

Leaves will be 1/2 full to full as well

8 List of pointers to records for “ace”
adapted from slide for Database Management Systems

by authors R. Ramakrishnan and J. Gehrke

Example B+ Tree
order = 2: 2 to 4 search keys per interior node

ace ad

Root

dog

dye egg

cad cat dog … dye … … … …. … …

cab bill

bit

pig heart soap

bat bee bill boy brie call cell

…

dune eel

…

List of pointers to records for “ad”
List of pointers to records for “bat”

… … …
List of pointers to
records for “eel”

…
…

…

leaves

…

…

9

Inserting and Deleting

1.  Method  on board

2.  Examples

10

Starting configuration
B+ tree of order d=1

13

5 10

20

40 50

root

30

1,4 5,9
11,12

13, 18 20,29

30,38 41,45 60, 70

11

Insert 19:
split leaf; expand parent with key 18

13

5 10

18

40 50

root

30

1,4 5,9
11,12

13 20,29

30,38 41,45 60, 70

18, 19

20

12

Insert 27
split leaf; expand parent with key 27 => too full

13

5 10

18

40 50

root

30

1,4 5,9
11,12

13 20,
30,38

41,45
60, 70

18, 19

27

27,29

20

3

13

Insert 27
 split leaf; split parent;

expand grandparent with key 20 => too full

13

5 10

18

40 50

root

30

1,4 5,9
11,12

13 20,
30,38

41,45
60, 70

18, 19

27

27,29

20

14

Insert 27
 split leaf; split parent; split grandparent

new root with key 20

13

5 10

18

40 50

root

30

1,4 5,9
11,12

13 20,
30,38

41,45
60, 70

18, 19

27

27,29

20

15

Delete 5, then 9
 redistribute from right sibling

13

5 12

18

40 50

root

30

1,4 11
12

13 20,
30,38

41,45
60, 70

18, 19

27

27,29

20

16

Delete 12
 merge leaves, delete key from parent

13

5

18

40 50

root

30

1,4 11

13 20,
30,38

41,45
60, 70

18, 19

27

27,29

20

17

Delete 4, then 11
 merge leaves, delete key from parent

=>parent not full enough

13

18

40 50

root

30

1

13 20,
30,38

41,45
60, 70

18, 19

27

27,29

20

18

Delete 4, then 11
 merge leaves, merge parent, bringing down key 13

 =>grandparent not full enough

13 18 40 50

root

30

1
13 20,

30,38
41,45

60, 70

18, 19

27

27,29

20

4

19

Delete 4, then 11
 merge leaves; merge parent, bringing down key 13

merge grandparent, bring down key 20,
remove root

13 18 40 50

root

30

1
13 20,

30,38
41,45

60, 70

18, 19

27

27,29

20

20

Dynamic hashing

•  Have talked about static hash
– Pick a hash function and bucket organization

and keep it
– Assume (hope) inserts/deletes balance out
– Use overflow pages as necessary

•  What if database growing?
– Overflow pages may get too plentiful
– Reorganize hash buckets to eliminate

overflow buckets
•  Can’t completely eliminate

21

Family of hash functions

•  Static hashing:
choose one good hash function h
– What is “good”?

•  Dynamic hashing:
chose a family of good hash functions
– h0, h1, h2, h3, … hk
– hi+1 refines hi :

if hi+1(x)= hi+1(y) then hi(x)=hi(y)
22

A particular hash function family
•  Commonly used: integers mod 2i

– Easy: low order i bits
•  Base hash function: any h mapping hash field

values to positive integers
•  h0(x)= h(x) mod 2b for a chosen b

– 2b buckets initially
•  hi(x)= h(x) mod 2b+i

– Double buckets each refinement
•  If x integer, h(x)= x sometimes used

 What does this assume for h0 to be good?

23

Specifics of dynamic hashing

•  Conceptually double # buckets when reorganize
•  Implementation: don’t want to allocate space

may not need
–  One bucket overflows, double all buckets? NO!

Solution?
One choice: extendible hashing

– Reorganize when and where need
(Second choice in text book: linear hashing)

24

Extendible hashing
•  When a bucket overflows,

–  actually split that bucket in two
–  Conceptually split all buckets in two

•  Use directory to achieve:
directory New directory

overflows split

new

Buckets Buckets

5

25

Extendible hashing details
•  Indexing directory with hi(x)= h(x) mod 2b+i

•  On overflow, index directory with
hi+1(x)= h(x) mod 2b+i+1

•  Directory size doubles
•  Add one bucket

00 overflows split

new

01
10
11

000
001
010
011
100
101
110
111 26

•  What did we do?
–  Split overflowing bucket m

•  Allocate new bucket
–  Copy directory
–  Change pointer of directory entry m+2b+i

Keep track of how many bits actually using
–  depth of directory: global depth
–  depth of each bucket: local depth (WHY KEEP?)

00 overflows split

new

01
10
11

000
001
010
011
100
101
110
111

2 2

2

2

2

3 3

2

2

2

3

27

Rule of bucket splitting
•  On bucket m overflow:

–  If depth(directory) > depth(bucket m)
•  Split bucket m into bucket m and bucket m+2depth(m)
•  Update depth buckets m and m+2depth(m)
•  Update pointers for all directory entries pointing to m

–  If depth(directory) = depth(bucket m)
•  Split bucket m into bucket m and bucket m+2depth(m)
•  Update depth buckets m and m+2depth(m)
•  Copy directory and update depth(directory)
•  Change pointer of directory entry m+2depth(m)

28

Example

00 0

1

2 6 10 14

3 7 11 15

0

1

2 10 18

3 7 11 15

6 14

01
10
11

000
001
010
011
100
101
110
111

2 2

2

2

2

3 2

2

3

2

3

Buckets: max 4 keys and data per bucket
Start with 4 buckets: depth(directory)=2

Insert records with
hash values h(r) =
0, 1, 2, 3, 6, 10,
14, 7, 11, 15:

Then insert h(r) = 18
bucket ‘10’ overflows
=> split

29

Example continued

0

1

2 10 18

3 7 11 15

6 14

000
001
010
011
100
101
110
111

3 2

2

3

2

3

Buckets: max 4 keys and data per bucket

Then insert h(r) = 19
bucket ‘11’ overflows
=> split

After inserted h(r)=18:

0

1

2 10 18

3 11 19

6 14

000
001
010
011
100
101
110
111

3 2

3

3

2

3

7 15 3
30

Extendible hashing observations

•  Splitting bucket does not always evenly
distribute contents
–  hi(x) may equal hi+1(x), hi+2(x), …

•  May need to split bucket several times
–  NOT: global depth – min(local depth) = 1

•  Can accept some overflow pages or split
aggressively

•  Almost no overflow pages with good hash
function and aggressive splitting.

•  If h(x) = h(y) always same bucket
–  cannot avoid overflow if too many of these!

6

31

Example bad bucket overflow

Bucket:

h(key) mod 22 = 1
h(key) mod 23 = 5
If add new entry with h(key)= 37 then h(key) mod 23 = 5
=>splitting once not enough
Need depth 4 directory

2

5, 13, 21, 29

4

5, 21, 37
4

13, 29
0101

1101

…

32

Index Operation
Costs

33

Extendible Hashing Costs
Assume: One page per bucket; no overflow pages

•  Look up: # pages read = 1 + 1
•  Assumes directory on disk

•  Insert without overflow
 = look-up cost + 1 to write page of bucket

•  Insert with overflow - splitting once:
 = look-up cost + 1 to write page of original bucket
 + 1 to write page of new bucket
 + 2 * (# disk pages of directory) to copy

•  Splitting once may not be enough
34

Extendible Hashing Costs
One page per bucket; use some overflow pages

•  Look up: add (# overflow pages) worst case
•  Insert without splitting: add 1 if add new

overflow page
•  Insert with splitting once:

 add (# overflow pages) always to look-up cost
 add (# overflow pages) to write cost worst case

•  must read overflow pages to split
•  adding 1 new bucket (page), so end up with
 # overflow pages within 1 of number had before

35

B+ tree costs: preliminaries
•  height of B+ tree = length of path: root → leaf
 ≤  logd+1 (N)  + 1

•  N is number of leaves of tree
•  d+1 is min fanout of interior nodes except root
•  + 1 is for root

•  typically root kept in memory
–  keep as many levels of tree as can in memory
–  buffer replacement algorithm may do,
 or pin

36

B+ tree costs: What is N?
•  B+ tree file organization:

–  each leaf holds records
 N ≥ (# records in file / # records fit in a page)
 N ≤ 2* (# records in file / # records fit in a page)

assuming no duplicate search key values

•  B+ tree primary index on sorted sequential file:
–  each leaf holds pointers to file pages

•  can be sparse index
– one key value (smallest) for each file page

•  (key value, pointer) pairs in leaves
– assume fit between d and 2d in leaf

 (# pages in file) / 2d) ≤ N ≤ (# pages in file) / d)
assuming no key value spans multiple pages

7

37

B+ tree costs: What is N?

•  B+ tree secondary index:
– each leaf holds pointers to page of pointers

•  indirection: pointers in point to records
• must be dense
•  (key value, pointer) pairs in leaves

– assume fit between d and 2d in leaf

 N ≤ (# key values in file) / d)
 N ≥ (# key values in file) / 2d)

38

B+ tree costs: retrieval
•  retrieving single record
 # of pages accessed =

height of B+-tree
+ 1 for root if on disk
 1 if leaves pt to records
 2 if leaves pt to page of pointers to records

≤  logd+1 (N)  + 3

•  typical height?

+

Indexing summary
•  dynamic search tree: B+ trees
•  dynamic hash table: extendible hashing
•  size of index depends on parameters

– dense or sparse?
– storing records? pointers to records?
 pointers to pages of pointers to records?

•  disk I/O cost same order as “in core”
running time.
– hash constant time
– search tree as log(N) 39

