COS 597D:
Principles of
Database and Information Systems

Storage Organization and
Data Access

Move down a level of abstraction

» Until now at level of user view of data
— models
— query languages

» Now: how actually store data and access
— disk storage (low-level abstraction)
— file organization (level between disk and user)
— access costs

Disks

» Main storage for large databases
- too much data for main memory
- need permanent storage

So far as technology advances, disk (aka hard
drive) still gives significantly more space and less
speed, regardless of how big/cheap RAM gets

— voracious appetite for space!

— True no matter where sit on cost/size curve for system

* impact solid state drives (SSDs)?

Disk organization

platters containing tracks

track read sequentially

» can seek from track to track

« tracks broken into sectors

— smallest physical unit can read / address

— typical size 512 Bytes
« Advanced Format 4096 Bytes

Disk access costs

* seek time «disk closeness
— milliseconds — adjacent sectors
+ rotational latency — same track
— milliseconds —same cyllndfer
— adjacent cylinder
« transfer rate

— 100 MB/sec

+ compare RAM
— nanoseconds
— factor of 108

Data File

collection of records

* records grouped into pages
—record ID (rid) conceptually (page #, slot #)
— Slot # gives position on page

» page is multiple of disk sectors

— stored sequentially on disk

— page smallest unit read
« typical 4-8 KB
— “page” also known as “block”

Memory buffer

* Memory allocated for file read/write (1/O)
* size of buffer in pages

read disk page into memory buffer

write to disk page from memory

buffer as big as can afford

buffer often not big enough
— buffer management

File organizations

Two issues

* how records assigned pages
— affects algorithms
— affects which pages read & in what order

* how pages put on disk
— want pages of file physically close on disk
— want likely sequences of pages read close

File storage management

* Who manages storage of files on disk
1. custom OS for DBMS
2. letOS doit
— typically one file per relation
3. define one OS file for whole DBMS
— DBMS manages w/in file
« DBMS buffer manager
— replacement strategy
— pinning
— forced-out pages

Conceptual organization of file

* Heap file
— linked list pages or directory of pages
—no order records in pages
— pages anywhere on disk

Conceptual organization of file (cont.)

 Hashing file
— hash function puts record in bucket
* bucket size is some number of pages
* hash gives address of primary page of bucket
« designated hash attribute(s) of records
— pages can be anywhere if hash gives location
—can be overflow
* pointers to overflow pages
» where overflow pages on disk?
— try to keep pages 80% full

Conceptual organization of file (cont.)

» Sequential file
— conceptually ordered set of records
« order often sort on attributes of relation
—records stored in order giving ordered set pages
— pages sequentially close => physically close
» compact after delete
— binary search?
* need i page in sorted order in one disk 1/0
» can have sorted file that is not sequential file

Acces cost model

B number of data pages in file
R number of records per page in full page
D average time to R/W disk page

—assume individual pages not sequential on disk
* no “block reads”

Ignore CPU time

Simple average case time analysis

» Simple assumptions
— Insert at end of heap
— No overflow buckets for hash
» Keep 80% occupancy
* Inserts/deletes in balance
— Sorted sequential file with binary search
— Delete assumes have address of record
Use analysis for relative costs
— TOO CRUDE for “on the fly” cost estimates

B data pages in file
R records per page

Avg. time Heap |Sorted |Hashed

D avg time to R/W page

Scan BD BD |1.25BD
Search =

(unique) .5BD | Dlog,B D
Search = D(log,B+| D (1
(multiple) gD |¥#extra + #extra

matching | matching
pages) pages)

Searchrange | BD “ 1.25 BD
S h +

Insert 20 | 2D

Delete (have

record location) | 2D | 2D+BD 2D

Critique

* R&G don’t account for how to keep hashed file 80%
occupied
— if not, overflow costs sometimes

» Sorted sequential file - expensive to keep pages
continguous on disk

— link pages + look-up table sorted on first value on
page of attribute sorted on

file page # file page location first attribute
value of page

=> index
* Improvements only for attribute of sort or hash
— Improve access using other attributes?
=> index 16

Index

Aucxillary information on location of a record or page to
facilitate retrieval

Search key: attribute (i.e. field, column) used as look-up
value for index

— not confuse with {primary, candidate, super} key
— alternate term “index field”

» ‘“index key” if attribute is a candidate key
— Could actually be combination of attributes

« e.g. LastName, FirstName

Basic index is a file containing mappings:
Seach key value — pointer(s) to page(s) containing
records with given search key value
17

Index Types

1. Index works with file organization
— Index and file work off same attribute
— Two types:
A. Index is file organization
— Example: Hashing file organization

— Index is access method: get pointer to page serving as
primary bucket of records for given hash value

B. Index supplements file organization

— Example: Sequential file plus search tree whose
leaves point to first page containing value seeking

— called clustered index
— some refer to as primary index
* not necessarily on primary key of relation 18

Index Types cont.

2. Index works independent of file organization
— File not organized on search key of index
— Index must provide
search key value — list of pointers to
all file pages that contain
records with that value
Example hash index:
* bucket contains list of page pointers
¢ pages may be scattered throughout the file
« overflow if too many pointers for one bucket
called nonclustering index
— some refer to as secondary index

A Sorted Index

» Consider sorted file but without consecutive

pages stored adjacently on disk

— Each page sorted

— Each page linked to next page in sorted order
— Cannot binary search

e Index: sorted attribute value pointer to first page containing

t
Sorted
order

One entry per attribute value in data file => dense index
Can binary search index entries if can keep in memory or

in sequential disk pages 2

Alternative sparse index for sorted file

again:
index search key same as sort attribute for file

file page number |page location | first value of search key on page

t
Sorted
order

One entry per file page
Again, binary search if keep in memory or sequentially on disk

Cost example dense sorted index

Use our crude estimates with
B data pages in file D avg time to R/W page
R records per page

Suppose index record 1/10 size of data record

Suppose search key (= sort attribute) is candidate key

Cost search for unique value using dense index:

number of records is the same for index file
B/10 pages in index file (file page size is fixed for all files)
Binary search cost = Dlog,(B/10)

Total cost = Dlog,(B/10) + D
includes data page access

Cost example sparse sorted index

Use our crude estimates with
B data pages in file D avg time to R/W page
R records per page

Suppose index record 1/10 size of data record

Suppose search key (= sort attribute) is candidate key

Cost search for unique value using sparse index:
B pages in data file => B entries in index file
10R index records per file page => B/(10R) index pages
Binary search cost = Dlog,(B/(10R))

Total cost = Dlog,(B/(10R)) + D
includes data page access 2

Compare costs:

Use our crude estimates with
B data pages in file D avg time to R/W page
R records per page

Suppose index record 1/10 size of data record
Suppose search key (= sort attribute) is candidate key

Cost search for unique value using dense index?
Dlog,(B/10) + D
Cost search for unique value using sparse index?
Dlog,(B/(10R)) + D

Compare costs: insertion

« Use our crude estimates with
B data pages in file D avg time to R/W page
R records per page

« Suppose index record 1/10 size of data record

« Suppose search key (= sort attribute) is candidate key

+ Recall data file pages not nec. stored consecutively on disk
— so can use overflow pages

« Cost to insert = cost to insert in data file
+ cost to insert in index file

= Search cost
+ D + ~4D write data file page and move ~1/2 records
of page if overflow
+D write index entry
{ D*B/10 move records for dense index
+

D*B/(10R) move records for sparse index 2

Index independent of file organization

But look again,
if search key is a candidate key,
this index works for any file organization :

search key ‘ pointer to unique page containing
t

Sorted
order

One entry per search key value - dense
Can binary search index as before if keep in memory or sequentially on disk
26

Sorted index for general case

« One value of search key found in many records
* Need list of pointers to pages containing these records
« Dense index still works

* Most common arrangement:
— indirection

Seach key pointer to page containing list

i
One entry
per attribute value.
Sorted
order

|

Addressing costs

+ Large sorted index costly in space and in time to
insert/delete

— When sorted index clustered, can use sparse index to
avoid space
— For general case, must have dense index
+ |deal: index to fit on one file page.
— Keep in main memory
* Rarely achieve, so next best:
— Index need not be stored sequentially on disk
— Access cost is no worse than O(log,B)

=> Search Tree!

Tree index

*Each node of tree fits in one page
*Each node of tree contains search key values
and pointers to subtrees for ranges of values
*Aleaf is
-For clustered index: a page of data file
-For general index: a page of pointers to records with given index values

root \

‘ A ‘l‘ B ‘._.‘value‘

'- q Asvalues<B ln Q
AEaniN

Static Trees

Build for file of records as balanced tree
Not gracefully accommodate insert/delete
ISAM: Indexed Sequential Access Method

» We focus on dynamic search trees

