
1

COS 597D:
Principles of

Database and Information Systems

Storage Organization and
Data Access

1

Move down a level of abstraction

•  Until now at level of user view of data
–  models
–  query languages

•  Now: how actually store data and access
–  disk storage (low-level abstraction)
–  file organization (level between disk and user)
–  access costs

2

Disks
•  Main storage for large databases
-  too much data for main memory
- need permanent storage

So far as technology advances, disk (aka hard
drive) still gives significantly more space and less
speed, regardless of how big/cheap RAM gets

–  voracious appetite for space!
–  True no matter where sit on cost/size curve for system

•  impact solid state drives (SSDs)?
3

Disk organization

•  platters containing tracks
•  track read sequentially
•  can seek from track to track
•  tracks broken into sectors

– smallest physical unit can read / address
–  typical size 512 Bytes

•  Advanced Format 4096 Bytes

4

Disk access costs

•  seek time
–  milliseconds

•  rotational latency
–  milliseconds

•  transfer rate
–  100 MB/sec

•  compare RAM
–  nanoseconds
–  factor of 106

• disk closeness
–  adjacent sectors
–  same track
–  same cylinder
–  adjacent cylinder

5

Data File

•  collection of records
•  records grouped into pages

–  record ID (rid) conceptually (page #, slot #)
– Slot # gives position on page

•  page is multiple of disk sectors
– stored sequentially on disk
– page smallest unit read

•  typical 4-8 KB
–  “page” also known as “block”

6

2

Memory buffer

•  Memory allocated for file read/write (I/O)
•  size of buffer in pages
•  read disk page into memory buffer
•  write to disk page from memory
•  buffer as big as can afford
•  buffer often not big enough

– buffer management

7

File organizations

Two issues

•  how records assigned pages
– affects algorithms
– affects which pages read & in what order

•  how pages put on disk
– want pages of file physically close on disk
– want likely sequences of pages read close

8

File storage management
•  Who manages storage of files on disk

1.  custom OS for DBMS
2.  let OS do it

–  typically one file per relation
3.  define one OS file for whole DBMS

–  DBMS manages w/in file

•  DBMS buffer manager
–  replacement strategy
–  pinning
–  forced-out pages

9

Conceptual organization of file

•  Heap file
–  linked list pages or directory of pages
– no order records in pages
– pages anywhere on disk

10

Conceptual organization of file (cont.)

•  Hashing file
– hash function puts record in bucket

•  bucket size is some number of pages
•  hash gives address of primary page of bucket
•  designated hash attribute(s) of records

– pages can be anywhere if hash gives location
– can be overflow

•  pointers to overflow pages
•  where overflow pages on disk?

–  try to keep pages 80% full
11

Conceptual organization of file (cont.)

•  Sequential file
– conceptually ordered set of records

•  order often sort on attributes of relation
–  records stored in order giving ordered set pages
– pages sequentially close => physically close

•  compact after delete
–  binary search?

•  need ith page in sorted order in one disk I/O

•  can have sorted file that is not sequential file
12

3

Acces cost model

•  B number of data pages in file
•  R number of records per page in full page
•  D average time to R/W disk page

– assume individual pages not sequential on disk
• no “block reads”

•  Ignore CPU time

13

Simple average case time analysis

•  Simple assumptions
–  Insert at end of heap
– No overflow buckets for hash

•  Keep 80% occupancy
•  Inserts/deletes in balance

– Sorted sequential file with binary search
– Delete assumes have address of record

•  Use analysis for relative costs
– TOO CRUDE for “on the fly” cost estimates

14

Avg. time Heap Sorted Hashed

Scan BD BD 1.25 BD
Search =
(unique) .5BD Dlog2B D
Search =
(multiple) BD

D(log2B +
extra
matching
pages)

D (1
+ # extra
matching
pages)

Search range BD “ 1.25 BD
Insert 2D Search +

D + BD 2D

Delete (have
record location) 2D 2D+BD 2D

B data pages in file D avg time to R/W page
R records per page

15

Critique
•  R&G don’t account for how to keep hashed file 80%

occupied
–  if not, overflow costs sometimes

•  Sorted sequential file - expensive to keep pages
continguous on disk
–  link pages + look-up table sorted on first value on

page of attribute sorted on

=> index
•  Improvements only for attribute of sort or hash

–  Improve access using other attributes?
=> index

file page # file page location first attribute
value of page

16

17

Index
•  Auxillary information on location of a record or page to

facilitate retrieval

•  Search key: attribute (i.e. field, column) used as look-up
value for index
–  not confuse with {primary, candidate, super} key
–  alternate term “index field”

•  “index key” if attribute is a candidate key
–  Could actually be combination of attributes

•  e.g. LastName, FirstName

•  Basic index is a file containing mappings:
 Seach key value → pointer(s) to page(s) containing

 records with given search key value
18

Index Types
1.  Index works with file organization

–  Index and file work off same attribute
–  Two types:

A.  Index is file organization
–  Example: Hashing file organization
–  Index is access method: get pointer to page serving as

primary bucket of records for given hash value

B.  Index supplements file organization
–  Example: Sequential file plus search tree whose

leaves point to first page containing value seeking

–  called clustered index
–  some refer to as primary index

•  not necessarily on primary key of relation

4

19

Index Types cont.
2.  Index works independent of file organization

–  File not organized on search key of index
–  Index must provide

search key value → list of pointers to
 all file pages that contain
 records with that value

–  Example hash index:
•  bucket contains list of page pointers
•  pages may be scattered throughout the file
•  overflow if too many pointers for one bucket

–  called nonclustering index
–  some refer to as secondary index

20

A Sorted Index
•  Consider sorted file but without consecutive

pages stored adjacently on disk
–  Each page sorted
–  Each page linked to next page in sorted order
–  Cannot binary search

•  Index: sorted attribute value pointer to first page containing

•  One entry per attribute value in data file => dense index
•  Can binary search index entries if can keep in memory or

in sequential disk pages

Sorted
order

21

Alternative sparse index for sorted file
again:
index search key same as sort attribute for file

file page number page location first value of search key on page

One entry per file page
Again, binary search if keep in memory or sequentially on disk

Sorted
order

22

Cost example dense sorted index
•  Use our crude estimates with

B data pages in file D avg time to R/W page
R records per page

•  Suppose index record 1/10 size of data record
•  Suppose search key (= sort attribute) is candidate key

•  Cost search for unique value using dense index:

number of records is the same for index file
B/10 pages in index file (file page size is fixed for all files)
Binary search cost = Dlog2(B/10)

Total cost = Dlog2(B/10) + D
includes data page access

23

Cost example sparse sorted index
•  Use our crude estimates with

B data pages in file D avg time to R/W page
R records per page

•  Suppose index record 1/10 size of data record
•  Suppose search key (= sort attribute) is candidate key

•  Cost search for unique value using sparse index:

B pages in data file => B entries in index file
10R index records per file page => B/(10R) index pages
Binary search cost = Dlog2(B/(10R))

Total cost = Dlog2(B/(10R)) + D
includes data page access 24

Compare costs:

•  Use our crude estimates with
B data pages in file D avg time to R/W page
R records per page

•  Suppose index record 1/10 size of data record
•  Suppose search key (= sort attribute) is candidate key

•  Cost search for unique value using dense index?
Dlog2(B/10) + D

•  Cost search for unique value using sparse index?
Dlog2(B/(10R)) + D

5

25

Compare costs: insertion
•  Use our crude estimates with

B data pages in file D avg time to R/W page
R records per page

•  Suppose index record 1/10 size of data record
•  Suppose search key (= sort attribute) is candidate key
•  Recall data file pages not nec. stored consecutively on disk

–  so can use overflow pages

•  Cost to insert = cost to insert in data file
 + cost to insert in index file

 = Search cost
 + D + ~4D write data file page and move ~1/2 records
 of page if overflow
 + D write index entry
 D*B/10 move records for dense index
 +

 D*B/(10R) move records for sparse index
26

Index independent of file organization

But look again,
if search key is a candidate key,
this index works for any file organization :

search key pointer to unique page containing

One entry per search key value - dense
Can binary search index as before if keep in memory or sequentially on disk

Sorted
order

27

Sorted index for general case
•  One value of search key found in many records
•  Need list of pointers to pages containing these records
•  Dense index still works
•  Most common arrangement:

–  indirection

Seach key pointer to page containing list

One entry
per attribute value.

Sorted
order

28

Addressing costs
•  Large sorted index costly in space and in time to

insert/delete
–  When sorted index clustered, can use sparse index to

avoid space
–  For general case, must have dense index

•  Ideal: index to fit on one file page.
–  Keep in main memory

•  Rarely achieve, so next best:
–  Index need not be stored sequentially on disk
–  Access cost is no worse than O(log2B)

 => Search Tree!

29

Tree index

A value …

value

value

value

root

• Each node of tree fits in one page
• Each node of tree contains search key values

and pointers to subtrees for ranges of values
• A leaf is

- For clustered index: a page of data file
- For general index: a page of pointers to records with given index values

B

A≤values<B

30

Static Trees

•  Build for file of records as balanced tree
•  Not gracefully accommodate insert/delete
•  ISAM: Indexed Sequential Access Method

•  We focus on dynamic search trees

