
1

1

COS 597D:
Principles of

Database and Information Systems

Distributed computing
on large data sets

2

Goals

•  Do one computation faster - latency
•  Do more computations in given

time - throughput
•  Tolerate failure of 1+ machines

3

Distributing query evaluation

•  Data distribution?
•  Computation distribution?

•  Goals
– Keep all machines busy
– Be able to replace badly-behaved

machines seamlessly!

4

MapReduce framework

•  programming model
•  implementation for large clusters

•  Google introduced for index building and PageRank
circa 2003

“for processing and generating large data sets”
•  The Apache Hadoop project developed open-source

software

5

MapReduce Programming Model
•  input set: {(input keyi, valuei)| 0 ≤ i ≤ input size}

•  user chooses type value – e.g. whole document
•  output set: {(output keyi, valuei)| 0 ≤ i ≤ output size}

•  Map (written by user):
(input key, value) →

{(intermed. keyj, valuej)| 0 ≤ j ≤ Map result size}

•  system groups all Map output pairs for input set by
intermediate key (shuffle phase)

•  gathers by intermediate key value
•  supply to Reduce by iterator

•  Reduce (written by user) process intermediate values:
(intermed. key, list of values) → (output key, value) 6

MapReduce for
building inverted index

•  Input pair: (docID, contents of doc)
•  Map: produce {(term, docID)} for each

term appearing in docID
•  Input to Reduce: list of all (term, docID)

pairs for one term
•  Output of Reduce: (term, sorted list of

docIDs containing that term)
– postings list!

keys

2

Diagram of computation distribution
MapReduce:
Simplified Data
Processing on Large
Clusters, J. Dean; S.
Ghemawat, Comm.
of the ACM, (2008)

MapReduce parallelism

•  Map phase and shuffle phase may overlap
•  Shuffle phase and reduce phase may overlap
•  Map phase must finish before reduce phase

starts
–  reduce depends on all values associated with a

given key

8

MapReduce Fault Tolerance

•  Master fails => restart whole computation
•  Worker node fails

–  Master detects failure
–  must redo all Map tasks assigned to worker

•  output of completed Map tasks on failed worker’s disk

–  for failed Map worker, Master
•  reschedules each Map task
•  notifies reducer workers of change in input location

–  for failed Reduce worker, Master
•  reschedules each Reduce task

–  rescheduling occurs as live workers become available
10

Communication Cost

•  Model: algorithm is acyclic network of tasks
–  cascaded MapReduce tasks

•  Communication cost task = size of input
–  bytes versus tuples

•  Commun. cost alg. = sum of cost of all tasks
•  Captures

–  Network cost
–  Disk cost

•  Why not output cost?
–  input to another algorithm
–  output “rarely large” 11

Rajaraman, Leskovec and Ullman

13

Remarks

•  Google built on large collections of inexpensive
“commodity PCs”
–  always some not functioning

•  Solve fault-tolerance problem in software
–  redundancy & flexibility NOT special-purpose hardware

•  Keep machines relative generalists
– machine becomes free ⇒

assign to any one of set of tasks

