Managing Functional Dependencies and Redundancy

General functional constraints (Review)

General form for relational model:
- Let \(\alpha(R) \) denote the set of names of attributes in the schema for relation \(R \)
- Let \(X \) and \(Y \) be subsets of \(\alpha(R) \)

The functional dependency \(X \rightarrow Y \) holds if for any instance \(I \) of \(R \) and for any pair of tuples \(t_1 \) and \(t_2 \) of \(R_i \),

\[
\pi_X(t_1) = \pi_X(t_2) \Rightarrow \pi_Y(t_1) = \pi_Y(t_2)
\]

- special cases: candidate keys, superkeys

Functional Constraint in SQL

CREATE TABLE Student
(
 sid CHAR(10),
 street CHAR(40),
 city CHAR(40),
 state CHAR(40),
 zipcode CHAR(10)
)

PRIMARY KEY (sid)

CHECK (not exist (
 SELECT *
 FROM Student S
 WHERE S.zipcode=zipcode
 AND S.state<>state
)
)

Why store state?

Redundancy
- Functional dependencies capture redundancy in a relation e.g. zipcode→state: why store state?
- Redundancy good for reliability
- Redundancy bad for
 - space to store: repetitions
 - must maintain on changes
 - representation of one relationship embedded in another

Example relation for a city elementary school system:

school_child: (name, st_addr, apt., birthday, school)

st_addr→school

consider a large apt. building

Solution: decompose

Example:

child: (name, st_addr, apt., birthday)
placement: (st_addr, school)

- child \(\bowtie \) placement gives school_child because of functional dependency
- space gain larger than space cost
- functional dependency now primary key constraint
- st_addr, school correspondence implicitly maintained
- computation cost?

General Form:
- for \(X, Y \subseteq \alpha(R) \) and \(X \rightarrow Y \)
- decompose \(R \) into
 \[
 R_1: \alpha(R) \setminus (Y \setminus X)
 R_2: X \cup Y
 \]

Constraint (school, stuID) → (st_addr, apt., birthday)
- was primary key constraint
- now split constraint
to check requires \(\bowtie \) - expensive
- primary key for stu?
Propose:
decompose to eliminate redundancy

Two examples
1. school_child: (name, st_addr, apt., birthday, school)
 st_addr → school
 becomes stu: (stuID, st_addr, apt., birthday)
 placement: (st_addr, school)

 primary key for stu?
 (stuID, st_addr) → (stuID, st_addr, school)
 (stuID, st_addr, school) → (stuID, st_addr, apt., birthday)
 so stu: (stuID, st_addr, apt., birthday)

  new primary key constraint does not imply
 old primary key constraint:
 (school, stuID) → (st_addr, apt., birthday)

Decomposition: Formal Properties

- Let \(\Phi \) be a set of functional dependencies (FDs) for a relational scheme \(R \) with attribute set \(\alpha(R) \)
- Let \(\Phi^+ \) denote the set of all FDs implied by \(\Phi \)
 the closure of \(\Phi \)
- Let \(X, Y \subseteq \alpha(R) \), where \(X \cap Y \) is not necessarily empty
- Let \(\Phi_2 \) denote set of FDs \(V \rightarrow W \) in \(\Phi^+ \) with \(Y \subseteq X \) and \(W \subseteq X \)
- Decomposition of \(R \) into \(R_1 \) and \(R_2: Y \) is
 - **lossless** if for every instance \(I \) of \(R \) that satisfies \(\Phi \)
 \(r_1(I) \bowtie r_2(I) = I \)
 • guaranteed to get back \(R \)
 - **dependency preserving** if \((\Phi_2 \cup \Phi_2)^* = \Phi^+ \)
 • can check all FDs for \(R \) by checking all for \(X \) and all for \(Y \) without doing JOIN

Implied functional dependencies

- **Definition:** a functional dependency \(X \rightarrow Y \) is **implied by** \(\Phi \) if \(X \rightarrow Y \) holds whenever all functional dependencies in \(\Phi \) hold
- **Armstrong’s Axioms** for attribute sets \(X, Y, Z \)
 1. if \(X \subseteq Y \) then \(Y \rightarrow X \) (reflexivity)
 2. if \(X \rightarrow Y \) then \(YZ \rightarrow XZ \) (augmentation)
 3. if \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \) (transitivity)
- **Theorem:** The set of all functional dependencies obtained from \(\Phi \) by repeated application of Armstrong’s Axioms gives \(\Phi^+ \)

Normal Forms

- How do we find “good” (“best”?) decomposition?
- Identify **normal forms** with desirable properties
 - must be lossless – can’t lose anything
 - should be dependency preserving - avoid need for joins to check dependencies
- Decompose so resulting relations are in normal form

Boyce-Codd Normal Form (BCNF)

- Let \(R \) denote a relational scheme with attribute set \(\alpha(R) \)
- \(R \) is in BCNF with respect to a set \(\Phi \) of FDs if for all FDs in \(\Phi^+ \) of the form \(X \rightarrow Y \) with \(X, Y \subseteq \alpha(R) \), at least one of
 - \(Y \subseteq X \) (trivial func. dep.)
 - \(X \) is a superkey for \(R \)
- very strong normal form
- can’t always get dependency preserving decomposition into set of BCNF relations
Third Normal Form (3NF)

- Let \(R \) denote a relational scheme with attribute set \(\alpha(R) \).
- \(R \) is in 3NF with respect to a set \(\Phi \) of FDs if for all FDs in \(\Phi^+ \) of the form \(X \rightarrow Y \) with \(X, Y \subseteq \alpha(R) \), at least one of:
 - \(Y \subseteq X \) (trivial func. dep.)
 - \(X \) is a superkey for \(R \)
 - each attribute \(A \) in \(Y \) is contained in a candidate key for \(R \)

- can always get lossless, dependency preserving decomposition into 3NF relations
- cannot always remove all functional dependencies

Why allow right hand side part of some candidate key?

- consider decomposing \(R \) using \(X \rightarrow A \)
 - \(A \) an attribute
 - \(X \) not superkey
 - \(A \) not in \(X \)
- get \(R_1: \alpha(R) - (A) \) and \(R_2: X \cup \{A\} \)
- if \(A \) not part of a candidate key then for any candidate key \(K \subseteq \alpha(R) \):
 check \(K \rightarrow \alpha(R) - \{A\} \) in \(R_1 \)
 including \(K \rightarrow X \)
 check \(X \rightarrow A \) in \(R_2 \)
 conclude \(K \rightarrow A \)

- if \(A \) is part of a candidate key \(K \):
 splitting key: \(K \cup \{A\} \in \alpha(R_1) \)
 \(K \cap (X \cup \{A\}) \in \alpha(R_2) \)
 to check \(K \) is a candidate key need \(R_1 \bowtie R_2 \) avoiding

Revisit example

<table>
<thead>
<tr>
<th>Lossless-join decomposition?</th>
<th>Dependency preserving decomposition?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal forms?</td>
<td></td>
</tr>
</tbody>
</table>

- school_child: (school, stuID, st_addr, apt., birthday)
 - becomes: school_child (st_addr \rightarrow school)
 - stu: (stuID, st_addr, apt., birthday)
 - placement: (st_addr, school)

Constraint (school, stuID) \(\rightarrow \) (st_addr, apt., birthday)
 - was primary key constraint
 - now split constraint
 to check requires \(\bowtie \) expensive

Decomposition to achieve 3NF

- Is polynomial-time algorithm for 3NF lossless-join, dependency-preserving decomposition
- Can require adding “extra” relation.
- Get at expense of redundancy

Example
- \(R \) with attributes \(ABCD \); \(AB \) primary key;
 - other functional dependencies \(A \rightarrow C \); \(B \rightarrow C \)
 - decompose \(R_1: ABD; R_2: BC \)
 - lossless? dependency-preserving?

Discussion

- Consider normal forms when designing relations.
- Using 3NF minimizes problems of general functional dependencies
 - does not eliminate
- Use BCNF if can get it
 - decomposition algorithm simpler too!

Example
- \(R \) with attributes \(ABCD \); \(AB \) primary key;
 - decompose \(R_1: ABD; R_2: BC \)
 - add \(R_3: AC \)
 - redundant because can get from \(R_1 \bowtie R_2 \)