COS 597D:
Principles of
Database and Information Systems

Managing
Functional Dependencies
and
Redundancy

General functional constraints (Review)

General form for relational model:

- Let α(R) denote the set of names of attributes in the schema for relation R
- Let X and Y be subsets of α(R)

The functional dependency $X \rightarrow Y$ holds if for any instance I of R and for any pair of tuples t_1 and t_2 of R,

$$\pi_{X}(t_{1}) = \pi_{X}(t_{2}) \Rightarrow \pi_{Y}(t_{1}) = \pi_{Y}(t_{2})$$

• special cases: candidate keys, superkeys

Functional Constraint in SQL

CREATE TABLE Student

Redundancy

- Functional dependencies capture redundancy in a relation e.g. zipcode→ state: why store state?
- · Redundancy good for reliability
- Redundancy bad for
 - space to store: repetitions
 - must maintain on changes
 - representation of one relationship embedded in another

Example relation for a city elementary school system: school_child: (name, st_addr, apt., birthday, school) st_addr → school

consider a large apt. building

Solution: decompose

)

Example:

child: (<u>name, st addr, apt.</u>, birthday) placement: (<u>st addr</u>, school)

- child ◊◊ placement gives school_child because of functional dependency
- space gain larger than space cost
- functional dependency now primary key constraint
- st_addr, school correspondence explicitly maintained
- computation cost?

General Form:

- for X, $Y \subseteq \alpha(R)$ and $X \to Y$
- decompose R into R1: α(R) - (Y-X) R2: X U Y

More problematic decompose

Example:

```
school_child: (<u>school, stuID</u>, st_addr, apt., birthday)
```

becomes stu: (stuID, st_addr, apt., birthday) placement: (st_addr, school) General Form: for X, $Y \subseteq \alpha(R)$ and $X \rightarrow Y$ **decompose** R into •R1: $\alpha(R)$ - (Y-X)•R2: $X \cup Y$

Constraint (school, stuID) \rightarrow (st_addr, apt., birthday)

- was primary key constraint
- now split constraint to check requires ◊◊ - expensive
- · primary key for stu?

Primary key for example

Example:

 $\begin{array}{c} \text{school_child: } \underbrace{(\text{school, stulD}, \text{ st_addr}, \text{apt., birthday})}_{\text{st_addr} \rightarrow \text{school}} \\ \text{becomes} & \text{stu: (stulD, st_addr, apt., birthday)} \\ & \text{placement: } \underbrace{(\text{st_addr}, \text{school})} \\ \end{array}$

primary key for stu?

 $(stulD, st_addr) \rightarrow (stulD, st_addr, school)$ $(stulD, st_addr, school) \rightarrow (stulD, st_addr, apt., birthday)$ so stu: $(stulD, st_addr, apt., birthday)$

★ new primary key constraint does not imply old primary key constraint: (school, stuID) → (st_addr, apt., birthday)

Propose:

decompose to eliminate redundancy

Two examples

- school_child: (name, st_addr, apt., birthday, school) st_addr → school
 - child: (name, st addr, apt., birthday)
 placement: (st addr, school)
- school_child: (school, stuID, st_addr, apt., birthday) st_addr → school

stu: (<u>stuID, st_addr</u>, apt., birthday)
placement: (<u>st_addr</u>, school)
(school, stuID) → (st_addr, apt., birthday)

Decomposition: Formal Properties

- Let Φ be a set of functional dependencies (FDs) for a relational scheme R with attribute set $\alpha(R)$
- Let Φ^+ denote the set of all FDs implied by Φ the closure of Φ
- Let $X, Y \subseteq \alpha(R)$, where $X \cap Y$ is not necessarily empty
- Let Φ_x denote set of FDs V \to W in Φ^+ with V \subseteq X and W \subseteq X
- Decomposition of R into R₁: X and R₂:Y is
 - lossless if for every instance I of R that satisfies Φ $\pi_X(I) \diamond \diamond \pi_Y(I) = I$
 - guaranteed to get back R
 - dependency preserving if $(\Phi_{x} \cup \Phi_{y})^{+} = \Phi^{+}$
 - can check all FDs for R by checking all for X and all for Y without doing JOIN

Implied functional dependencies

- Definition: a functional dependency X→Y is implied by Φ if X→Y holds whenever all functional dependences in Φ hold
- Armstrong's Axioms

for attribute sets X, Y, Z

- 1. if $X \subseteq Y$ then $Y \to X$
 - reflexivity
- 2. if $X \rightarrow Y$ then $\forall Z (XZ \rightarrow YZ)$ augmentation
- 3. if $X \to Y$ and $Y \to Z$ then $X \to Z$ transitivity
- Theorem: The set of all functional dependences obtained from Φ by repeated application of Armstrong's Axioms gives Φ⁺

Normal Forms

- How do we find "good " ("best"?) decomposition?
- Identify normal forms with desirable properties
 - must be lossless can't lose anything
 - should be dependency preserving avoid need for joins to check dependencies
- Decompose so resulting relations are in normal form

Boyce-Codd Normal Form (BCNF)

- Let R denote a relational scheme with attribute set α(R)
- R is in BCNF with respect to a set Φ of FDs if for all FDs in Φ^+ of the form $X{\to}Y$ with X, Y $\subseteq \alpha(R)$, at least one of
 - $-Y\subseteq X$ (trivial func. dep.)
 - X is a superkey for R
- very strong normal form
- can't always get dependency preserving decomposition into set of BCNF relations

Third Normal Form (3NF)

- Let R denote a relational scheme with attribute set $\alpha(R)$
- R is in 3NF with respect to a set Φ of FDs if for all FDs in Φ⁺ of the form X→Y with X, Y ⊆ α(R), at least one of
 - Y ⊆ X (trivial func. dep.)
 - X is a superkey for R
 - each attribute A in Y-X is contained in a candidate key for R
- can always get lossless, dependency preserving decomposition into 3NF relations
- · cannot always remove all functional dependencies

Why allow right hand side part of some candidate key?

- consider decomposing R using $X \rightarrow A$
 - A an attribute
 - X not superkey
 - A not in X
- get R_1 : $\alpha(R)$ (A) and R_2 : $X \cup \{A\}$
- if A not part of a candidate key then

$$\label{eq:K} \begin{split} \text{for any candidate key } K \subseteq \alpha(R) \\ \text{check } K \to \alpha(R) \text{ -{A} in } R_1 \\ \text{including } K \to X \\ \text{check } X \to A \text{ in } R_2 \end{split}$$

all checks local to R₁ or R₂ NO HARM DECOMPOSE

conclude K → A

if A is part of a candidate key K

soliting key: K-A in g(R): K ○ (X I I (A)

splitting key: K-A in $\alpha(R_1)$; K \cap (X U {A}) in $\alpha(R_2)$ to check K is a candidate key need $R_1 \diamond \diamond R_2$ AVOIDING

Revisit example

Lossless-join decomposition?
Dependency preserving decomposition?
Normal forms?

school_child: (school, stulD, st_addr, apt., birthday)

becomes

stu: (stulD, st addr, apt., birthday) placement: (st addr, school)

Constraint (school, stuID) → (st_addr, apt., birthday)

- was primary key constraint
- now split constraint to check requires ◊◊ - expensive

Decompositon to achieve 3NF

- Is polynomial-time algorithm for 3NF losslessjoin, dependency-preserving decomposition
- Can require adding "extra" relation.
- · Get at expense of redundancy

Example

R with attributes ABCD; AB primary key; other functional dependencies A→C; B→C decompose R1: ABD; R2: BC lossless? dependency-preserving?

Decompositon to achieve 3NF

- Is polynomial-time algorithm for 3NF lossless dependency-preserving decomposition
- · Can require adding "extra" relation.
- · Get at expense of redundancy

Example

R with attributes ABCD; AB primary key; A \rightarrow C; B \rightarrow C decompose R1: ABD; R2: BC add R3: AC

redundant because can get from R1 ◊◊ R2

Discussion

- Consider normal forms when designing relations.
- Using 3NF minimizes problems of general functional dependencies
 - does not eliminate
- Use BCNF if can get it
 - decomposition algorithm simpler too!