
1

1

COS 597D:
Principles of

Database and Information Systems

Query Evaluation

Algorithms and Costs

•  use what learned about
–  file organizations
–  indexes

•  examine relational algebra operations
•  abstration

–  relational database level – operations
–  file organization and index level
– disk organization level

2

costs

Issues to consider

•  Read disk pages to main memory buffer pages
=> how may buffer pages F?

•  What file organization – e.g. sorted?
•  What Hash and Tree indexes available?

–  on what search key?
–  on what file organization?

•  Buffer use by algorithm?
–  “read x pages of relation R”
 => must be enough buffer space
–  “for record of R” => record must be in buffer
 => page of R containing record must be in buffer 3

How execute 1 relational operation?

•  Start with JOIN with condition one field =
– R ◊◊R.f=S.f S
–  “meatiest”

•  other JOINs, other binary operations, other
unary operations just variations

•  Cost counts disk page I/O
= # I/Os to write output file (result)
 + rest of I/O cost

4

always size
of result
in pages:
IGNORE

5

Parameters

F - number pages in buffer

M - number pages in R
N - number pages in S

nR - number records in R
nS - number records in S

6

Major named algorithms
Block nested loop join

checks all pairs in RXS
pages read = M+ (M/(F-2))*N

Index nested loop join
index on S with join
attribute as search key

pages read =
M + ∑ chunks (∑ (
 index cost to first page of records with S.f=xi
 + # additional pages of such records))
best: ≈ M+ constant*(# distinct values of f in R)
worst (secondary index): ≈ M +nR(index cost to first page) + nS

• read R, F-2 pages at a time
• for each “chunk” of F-2 pages of R,

• for each value of f in the chunk
• look up matching records of S

• read R F-2 pages at a time
• for each “chunk” of F-2
pages of R,

• read S

distinct values xi of join attribute in chunk

2

7

Major named algorithms, cont.
Merge join

•  Given R and S sorted on join attribute f
•  same alg. as merging sorted lists except when find

equal values of R.f and S.f, output all such R,S pairs
of records as joined records

pages read = M+ N+ cost to re-read of portion of S
 when one value of xi crosses page boundaries in R

= M+ N+ ∑ (

 ((# pages of R with records having R.f = xi) -1)

 * (# pages of S with records having S.f = xi))
best: = M + N
worst: = M+M*N use more buffer to improve

values, xi, of f shared by tuples in R and S

8

External Sorting of file R on attribute f
•  Phase 1:

  read R into buffer F pages at at time
  for each buffer-full

sort and write out run of size F pages to disk
•  at end of phase 1: have M/F sorted runs of size F

–  remainder may be smaller
•  Phase 2:

L0 = { runs at end of phase 1}
while |Li|>1

merge groups of F-1 runs in Li into larger runs
 using (F-1)-way list merge: 1 input page per run

–  remainder may merge fewer
Li+1 = {newly produced runs} // |Li+1| = |Li|/(F-1)

9

pages read/written in external sort
•  Phase 1 costs 2M for read and write
•  Phase 2:

–  # times through while loop ≤ logF-1 (M/F)
•  tree with fanout F-1 and M/F leaves

–  read and write M pages each time
•  rearranging records in buffer
•  repacking into pages

–  total cost ≤ 2 M* logF-1 (M/F)
•  total # page reads/writes

≤ 2*M(1 + logF-1 (M/F))
•  if F-1 ≥ √M reduces to 4M

10

Major named algorithms, cont. 2

•  Sort merge join
–  sort R and S
–  use merge join

•  cost if not multiple pages of duplicates to join:
 2*M (1 + logF-1 (M/F))
 + 2*N (1 + logF-1 (N/F))
 + M+ N
⇒  cost if F ≥ max (√M, √N):
 ≈ 5(M + N)

11

Final named algorithm we examine
•  Hash join

–  if can sort R and S to get faster join, why not
build hashes of R and S?

– choose hash function h that maps values of
attribute f into F-1 values
•  not pre-existing hash index

– partition each of R, S separately using h:
•  read in R one page at a time
•  F-1 pages for output, one for each hash value
•  move each record r of R to output page for h(r[f])
•  when full, write an output page to disk and link to

last page output for that hash value
12

•  hash join continued
  if each bucket of R contains ≤ F-2 pages:
 for each bucket of R

 read in entire bucket to buffer
 for each page of S in corresponding bucket

•  read page into buffer
•  compare records in page with all records in
 bucket of R
•  write resulting records of join
 to output page of buffer

  can reverse roles of R and S
  cost: 2(M+N) to build hash buckets
 + M+N to read in corresponding buckets

3

13

•  hash join still continued

if some corresponding buckets of R and S are
large, i.e. contain > F-2 pages:

  have 2nd hash function h2 hashing into F-1
values

  for each pair of large buckets of R and S,
partition each bucket using h2

  for each pair of resulting buckets with one
having ≤ F-2 pages, calculate join

  for each pair of resulting large buckets,
 recurse with h3

…
14

Hash join cost
•  If have family of hash functions hi that distribute

uniformly, then need at most i = logF-1(M) to
partition R down to 1 page buckets.

•  Analogous for S.
•  Then average recursive depth is

logF-1(min(M, N)
•  Then # pages read/write
 ≤ 2*logF-1min(M, N)*(M+N) to do partitioning

 + (M+N) to do all join calculations

•  Can fail to avoid large buckets - collisions

15

Sort merge versus hash
+  hash: only need to recursively partition buckets

until fit in F-2 pages
-  Sort merge must really use logF-1 (M/F) and
 logF-1 (N/F) levels to merge runs

+  hash: if min(M,N) < (F-1)(F-2) and hi’s spread
values well, get read/write cost 3(M+N)

-  Sort merge: need max(M,N)≤(F-1)2 and no value
of attribute f for which both R and S have
multiple pages to get read/write cost 5(M+N)

But sort-merge join gives sorted result;
may be useful!

16

Observations

•  general strategy: reduce to comparing
records in small subsets that fit in memory

•  techniques can generalize to varying
degrees from equality on single shared
attribute

17

Query Evaluation:
Beyond Joining

18

Selection

•  Operating on only one relation (file)
•  Worst case: sequential search

– Linear time
– Often best case too

•  If have index on R.f?
– Equality condition on R.f
 => look up cost of index
– Range lb ≤ R.f ≤ ub condition and tree index

=> look up cost of index

4

19

Selection with multiple conditions
R.x = a AND (R.y = b OR R.z < c) …

•  Linear search: check Boolean expression
of all conditions at once
– No extra cost – all in main memory

•  If have indexes on attributes in selection
– AND of conditions:

•  use index giving lowest cost to retrieve candidates
satisfying condition on attribute of index

– Cost to retrieve record?
– Number of records retrieve?

•  Check other conditions on retrieved records

20

Selection with multiple conditions
continued

•  If have indexes on attributes in selection
–  OR of conditions:

1.  Retrieve records satisfying each condition using
index

2.  Union retrieved sets to form result of OR
  Total cost of Step 1 must be less than one linear

scan
  If any attribute used in condition has no index

must do scan
 => only do scan

21

Selection with multiple conditions AND
 indexes giving record pointers*

If index for every attribute involved => alternative algorithm:
1.  For each equality or inequality condition

 Retrieve using index, the pointers (record IDs)
 for records satisfying condition

2.  Sort sets of pointers
3.  Merge sets of pointers

•  For AND, take intersection
•  For OR, take union

4.  Retrieve actual data records using pointers
Must evaluate if will be cheaper than getting data records

earlier in process

* i.e. secondary indexes 22

Using record pointers

•  If can get pointers for all records in query
result can look up data records once

•  Manipulate pointers of candidate records
– Smaller size

•  When ready to retrieve data records
– Sort disk page location of pointers

•  Result may be much smaller than relation
– Read each disk page once
– Read disk pages contiguously

23

Projection
•  Must read all records – linear scan
•  Only issue is duplicate removal

1.  Most common technique: Sort
–  Can eliminate unwanted attributes in Stage 1 of sort

  Shrinks record size => less pages to write (maybe)
–  Can eliminate duplicates in merge phases of sort

2.  Alternate technique: analogous to hash-join
1.  Drop attributes don’t want and hash into F-1 buckets
2.  For each bucket

If bucket fits in F-1 buffer pages, eliminate duplicates
Otherwise, recurse

3.  Gift: sorted file on multi-attribute sort key and
attributes want are a prefix

–  When eliminate unwanted attributes, duplicates adjacent

