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We will study how to use probability models to analyze data, focusing both on mathematical
details of the models and the technology that implements the corresponding algorithms. We
will study advanced methods, such as large scale inference, model diagnostics and selection,
and Bayesian nonparametrics. Our goals are to understand the cutting edge of modern
probabilistic modeling, to begin research that makes contributions to this field, and develop
good practices for specifying and applying probabilistic models to analyze real-world data.

The centerpiece of the course will be the student project. Over the course of the semester,
students will develop an applied case study, ideally one that is connected to their graduate
research. Each project must involve using probabilistic models to analyze real-world data.

Prerequisites

I assume you are familiar with the basic material from COS513 (Foundations of Proaba-
bilistic Modeling). For example, you should be comfortable with

probabilistic graphical models

basic statistics

mixture modeling

linear regression

hidden Markov models

exponential families

the expectation-maximization algorithm

We will study again some of the advanced material that was touched on in COS513, such
as variational inference and Bayesian nonparametrics.

I assume you are comfortable writing software to analyze data and learning about new
tools for that purpose. For example, you should be familiar with a statistical programming
language such as R and a scripting language such as Python.



Administrative Details

The instructor is David Blei (blei@cs.princeton.edu).
The course meets Monday from 1:30PM - 4:20PM in Room 302 of the CS building.
Office hours are Mondays from 10:30AM - 12:30PM in Room 419 of the CS building.

The course website is www.cs.princeton.edu/courses/archive/fall13/cos5974/.
We will use Piazza to distribute readings and have online discussion.

Requirements and Grading

There are four requirements for the course.

1. Participate in class. This is a seminar based on discussion. Each student must
participate substantially to class.

2. Weekly paper. Each student will submit a two part weekly paper. First, write on
what you thought about the week’s reading. Second, write about your progress on
the class project. This might include summaries of additional reading or interesting
intermediate results.

These papers should be no longer than two pages. They can be as short as needed.

3. Project. There will be short progress reports about the final project due throughout
the semester. A final report about your project is due by Dean’s Date. I grade final
reports on both content and writing quality. Two good books about writing are Strunk
and White (1979) and Williams (1981).

4. Demonstration. Each student is required to give a 15 minute demonstration of a tool
or technique. As much as possible, he or she should walk us through code or run an
interpreter. I do not expect the student to be an expert in the tool; the idea is to have
some experience with it and then lead a discussion.

Some example demonstrations include “Processing text data with n1tk”, “Keeping
track of research with iPython notebooks”, “Exploring results with plyr”, “Interac-
tive data visualization with D3”, “Probabilistic programming with Stan”, and “Shell
scripts I cannot live without”.

Your course grade will be mainly based on the final report, but I will also consider the other
requirements. The weekly papers will not be individually graded. Please prepare all written
work using LaTex. I will provide LaTex templates before the first assignment.

There are no auditors. Those that cannot enroll (for example, postdocs or visiting re-
searchers) must still complete all of the work.



Schedule

There is an assigned reading each week, sometimes a choice of readings and sometimes
additional optional readings. Students are also expected to read outside of the syllabus in
the service of their final projects.

Below is a tentative schedule of course topics and readings. These may change depending
on student interests and the overall trajectory of the course.
1. Introduction and overview of the course

2. Applied probabilistic modeling
(Blei, 2013)

3. Model specification
(Lehmann, 1990; Varian, 1997)

4. Variational inference and stochastic optimization
(Wainwright and Jordan, 2008; Hoffman et al., 2013)

5. Hierarchical models, shrinkage, and empirical Bayes
(Gelman and Hill, 2007; Efron, 2010)

6. Mixed-membership models
(Pritchard et al., 2000; Blei, 2012; Rusch et al., 2013)

7. Model fitness: Posterior predictive checks and predictive likelihood
(Gelman et al., 1996; Box, 1980; Rubin, 1984; Geisser, 1975)

8. Data visualization, the grammar of graphics (and ggplot2)
(Wilkinson, 2009)

9. Bayesian nonparametrics: Clustering models
(Gershman and Blei, 2012; Teh and Jordan, 2008)

10. Bayesian nonparametrics: Latent feature models
(Griffiths and Ghahramani, 2011; Broderick et al., 2013)

11. Variational inference with nonconjugate models
(Braun and McAuliffe, 2010; Wang and Blei, 2013)

12. Bayesian statistics and the philosophy of science
(Gelman and Shalizi, 2012)

In addition to the assigned papers, consider reading Gelman et al. (1995), Bishop (2006),
and Murphy (2013). These are excellent sources on applied probabilistic modeling.
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