
princeton univ. F’13 cos 521: Advanced Algorithm Design

Lecture 6: Provable Approximation via Linear Programming

Lecturer: Sanjeev Arora Scribe:

One of the running themes in this course is the notion of approximate solutions. Of
course, this notion is tossed around in applied work a lot: whenever the exact solution
seems hard to achieve, you do your best and call the resulting solution an approximation.
In theoretical work, approximation has a more precise meaning whereby you prove that
the solution in hand is close to the exact or optimum solution in some precise metric. We
saw some earlier examples of approximation in sampling-based algorithms; for instance our
hashing-based estimator for set size. It produces an answer that is whp within (1+ ε) of the
true answer. Today we will see many other examples that rely upon linear programming
(LP).

Recall that most NP-hard optimization problems involve finding 0/1 solutions. Using
LP one can find fractional solutions, where the relevant variables are constrained to take
real values in [0, 1].

Recall the example of the assignment problem from last time, which is also a 0/1 problem
(a job is either assigned to a particular factory or it is not) but the LP relaxation magically
produces a 0/1 solution (we didn’t prove this in class though). Whenever the LP produces
a solution in which all variables are 0/1 then this must be the optimum 0/1 solution since
it is the best fractional solution, and the class of fractional solutions contains every 0/1
solution. Thus the assignment problem is solvable in polynomial time.

Needless to say, we don’t expect this magic to repeat for NP-hard problems. So the LP
relaxation yields a fractional solution. Then we give a way to round the fractional solutions
to 0/1 solutions. This is accompanied by a mathematical proof that the new solution is
provably approximate.

1 Deterministic Rounding (Weighted Vertex Cover)

First we give an example of the most trivial rounding of fractional solutions to 0/1 solutions:
round variables< 1/2 to 0 and≥ 1/2 to 1. Surprisingly, this is good enough in some settings.

In the weighted vertex cover problem, which is NP-hard, we are given a graph G = (V,E)
and a weight for each node; the nonnegative weight of node i is wi. The goal is to find a
vertex cover, which is a subset S of vertices such that every edge contains at least one vertex
of S. Furthermore, we wish to find such a subset of minimum total weight. Let V Cmin be
this minimum weight. The following is the LP relaxation:

min
∑

iwixi
0 ≤ xi ≤ 1 ∀i

xi + xj ≥ 1 ∀ {i, j} ∈ E.
Let OPTf be the optimum value of this LP. It is no more than V Cmin since every 0/1

solution is also an acceptable fractional solution.
Applying deterministic rounding, we can produce a new set S: every node i with xi ≥

1/2 is placed in S and every other i is left out of S.

1



2

Claim 1: S is a vertex cover.
Reason: For every edge {i, j} we know xi + xj ≥ 1, and thus at least one of the xi’s is at
least 1/2. Hence at least one of i, j must be in S.
Claim 2: The weight of S is at most 2OPTf .
Reason: OPTf =

∑
iwixi, and we are only picking those i’s for which xi ≥ 1/2. 2.

Thus we have constructed a vertex cover whose cost is within a factor 2 of the optimum
cost even though we don’t know the optimum cost per se.

Exercise: Describe a graph in which the above method indeed computes a set of size 2
times OPTf (or as close to 2 as you can).

Remark: This 2-approximation was discovered a long time ago, and we still don’t know if it
can be improved. Using the so-called PCP Theorems Dinur and Safra showed (improving
a long line of work) that 1.36-approximation is NP-hard. Khot and Regev showed that
computing a (2−ε)-approximation is UG-hard, which is a new form of hardness popularized
in recent years. The bibliography mentions a popular article on UG-hardness.

2 Simple randomized rounding: MAX-2SAT

Simple randomized rounding is as follows: if a variable is xi is a fraction then toss a coin
which comes up heads with probability x1. (In Homework 1 you figured out how to do
this given a binary representation of xi.) If the coin comes up heads, make the variable 1
and otherwise let it be 0. The expectation of this new variable is exactly x1. Furthermore,
linearity of expectations implies that if the fractional solution satisfied some linear constraint
cTx = d then the new variable vector satisfies the same constraint in the expectation. But
in the analysis that follows we will in fact do something more.

A 2CNF formula consists of n boolean variables x1, x2, . . . , xn and clauses of the type
y ∨ z where each of y, z is a literal, i.e., either a variable or its negation. The goal in
MAX2SAT is to find an assignment that maximises the number of satisfied clauses. (Aside:
If we wish to satisfy all the clauses, then in polynomial time we can check if such an
assignment exists. Surprisingly, the maximization version is NP-hard.) The following is
the LP relaxation where J is the set of clauses and yj1, yj2 are the two literals in clause j.
We have a variable zj for each clause j, where the intended meaning is that it is 1 if the
assignment decides to satisfy that clause and 0 otherwise. (Of course the LP can choose to
give zj a fractional value.)

min
∑

j∈J zj
1 ≥ xi ≥ 0 ∀i
yj1 + yj2 ≥ zj

Where yj1 is shorthand for xi if the first literal in the jth clause is the ith variable, and
shorthand for 1− xi if the literal is the negation of the i variable. (Similarly for yj2.)

If MAX-2SAT denotes the number of clauses satisfied by the best assignment, then it is
no more than OPTf , the value of the above LP. Let us apply randomized rounding to the
fractional solution to get a 0/1 assignment. How good is it?

Claim: E[number of clauses satisfied] ≥ 3
4 ×OPTf .



3

We show that the probability that the jth clause is satisfied is at least 3zj/4 and then
the claim follows by linear of expectation.

Suppose the clauses is xr ∨ xs. Then zj ≤ xr + xs and in fact it is easy to see that
zj = min {1, xr + xs} at the optimum solution (after all, why would the LP not make zj as
large as allowed; its goal is to maximize

∑
j zj). The probability that randomized rounding

satisfies this clause is exactly 1− (1− xr)(1− xs) = xr + xs − xrxs.
But xrxs ≤ 1

4(xr + xs)
2 (prove this!) so we conclude that the probability that clause j

is satisfied is at least zj − z2j /4 ≥ 3zj/4. 2.

Remark: This algorithm is due to Goemans-Williamson, but the original 3/4-approximation
is due to Yannakakis. The 3/4 factor has been improved by other methods to 0.94.

3 Dependent randomized rounding: Virtual circuit routing

Often a simple randomized rounding produces a solution that makes no sense. Then one
must resort to a more dependent form of rounding whereby chunks of variables may be
rounded up or down in a correlated way. Now we see an example of this from a classic
paper of Raghavan and Tompson.

In networks that break up messages into packets, a virtual circuit is sometimes used
to provide quality of service guarantees between endpoints. A fixed path is identified and
reserved between the two desired endpoints, and all messages are sped over that fixed path
with minimum processing overhead.

Given the capacity of all network edges, and a set of endpoint pairs (i1, j1), (i2, j2), . . . , (ik, jk)
it is NP-hard to determine if there is a set of paths which provide a unit capacity link be-
tween each of these pairs and which together fit into the capacity constraints of the network.

Now we give an approximation algorithm when we assume that (a) a unit-capacity path
is desired between each given endpoint pair (b) the total capacity cuv of each edge is at
least d log n, where d is a sufficiently large constant.

The idea is to write an LP. For each endpoint pair i, j that have to be connected and
each edge e = (u, v) we have a variable xi,juv that is supposed to be 1 if the path from i to j
passes through (u, v), and 0 otherwise. (Note that edges are directed.) Then for each edge
(u, v) we can add a capacity constraint∑

i,j:endpoints

xi,juv ≤ cuv.

But since we can’t require 0/1 assignents in an LP, we relax to 0 ≤ xi,juv ≤ 1. This allows
a path to be split over many paths (this will remind you of network flow if you have seen
it in undergrad courses). Of course, this seems all wrong since avoiding such splitting was
the whole point in the problem! Be patient just a bit more.

Furthermore we need the so-called flow conservation constraints. These say that the
fractional amount of paths leaving i and arriving at j is 1, and that paths never get stranded
in between.∑

v x
ij
uv =

∑
v x

ij
vu ∀u 6= i, j∑

v x
ij
uv −

∑
v x

ij
vu = 1 u = i∑

v x
ij
vu −

∑
v x

ij
uv = 1 u = j



4

Suppose this LP is feasible and we get a fractional solution
{
xi,juv

}
. These values can be

seen as bits and pieces of paths lying strewn about the network.
Let us first see that neither deterministic rounding nor simple randomized rounding is

a good idea. Consider a node u where xiju v is 1/3 on three incoming edges and 1/2 on two
outgoing edges. Then deterministic rounding would round the incoming edges to 1 and
outgoing edges to 1, creating a bad situation where the path never enters u but leaves it on
two edges! Simple randomized rounding will also create a similar bad situation with Ω(1)
(i.e., constant) probability. Clearly, it would be much better to round along entire paths
instead of piecemeal.

Flow decomposition: For each endpoint pair i, j we create a finite set of paths p1, p2, . . . ,
from i to j as well as associated weights wp1 , wp2 , . . . , that lie in [0, 1] and sum up to 1.

Furthermore, for each edge (u, v): xi,ju,v = sum of weights of all paths among these that
contain u, v.

Flow decomposition is easily accomplished via depth first search. Just repeatedly find a
path from i to j in the weighted graph defined by the xijuv’s: the flow conservation constraints
imply that this path can leave every vertex it arrives at except possibly at j. After you
find such a path from i to j subtract from all edges on it the minimum xijuv value along this
path. This ensures that at least one xijuv gets zeroed out at every step, so the process is
finite.

Randomized rounding: For each endpoint pair i, j pick a path from the above decom-
position randomly by picking it with probability proportional to its weight.

Now we show that this satisfies the edge capacities approximately.
This follows from Chernoff bounds. The expected number of paths that use an edge

{u, v} is ∑
i,j:endpoints

xi,ju,v.

The LP constraint says this is at most cuv, and since cuv > d log n this is a sum of at
least d log n random variables. Chernoff bounds imply that this is at most (1 + ε) times its
expectation for all edges with high probability.

How do you interpret this result? It is an approximation algorithm of sorts. It says that
if the original problem is feasible with edge capacities ce’s then we can produce an integer
solution that requires edge capacities (1 + ε)ce.

Bibliography

1. New 3/4-approximation to MAX-SAT by M. X. Goemans and D. P. Williamson, SIAM
J. Discrete Math 656-666, 1994.

2. Randomized rounding: A technique for provably good algorithms and algorithmic
proofs by P. Raghavan and C. T. Tompson, Combinatorica pp 365-374 1987.

3. On the hardness of approximating minimum vertex cover by I. Dinur and S. Safra,
Annals of Math, pp 439485, 2005.



5

4. Approximately hard: the Unique Games Conjecture. by E. Klarreich.
Popular article on https://www.simonsfoundation.org/


