
princeton univ. F’13 cos 521: Advanced Algorithm Design

Lecture 4: Hashing with real numbers and their big-data
applications

Lecturer: Sanjeev Arora Scribe:

Using only memory equivalent to 5 lines of printed text, you can estimate with a
typical accuracy of 5 per cent and in a single pass the total vocabulary of Shake-
speare. This wonderfully simple algorithm has applications in data mining, esti-
mating characteristics of huge data flows in routers, etc. It can be implemented
by a novice, can be fully parallelized with optimal speed-up and only need minimal
hardware requirements. Theres even a bit of math in the middle!

Opening lines of a paper by Durand and Flajolet, 2003.

Hashing is generally thought of as a way to rename an address space. For instance,
a router at the internet backbone may wish to have a searchable database of destination
IP addresses of packets that are whizing by. An IP address is 128 bits, so the number of
possible IP addresses is 2128, which is too large to let us have a table indexed by IP addresses.
Hashing allows us to rename each IP address by fewer bits. This was the classical viewpoint
presented in Lecture 1, where the hash is a number in a finite field (integers modulo a prime
p).

In recent years large data algorithms have used hashing in interesting ways where the
hash is viewed as a real number. For instance, we may hash IP addresses to real numbers
in the unit interval [0, 1]. Strictly speaking, one hashes to rational numbers in [0, 1] For
instance, hash IP addresses to the set [p] as before, and then think of number “i mod p”as
the rational number i/p. This works OK so long as our method doesn’t need too many bits
of precision in the real hash.

A general note about sampling. As pointed out in Lecture 3 using the random variable
”Number of ears,” the expectation of a random variable may never be attained at any point
in the probability space. But if we draw a random sample, then we know by Chebysev’s
inequality that the sample has chance at least 1 − 1/k2 of taking a value in the interval
[µ − kσ, µ + kσ] where µ, σ denote the mean and variance respectively. Thus to get any
reasonable idea of µ we need σ to be less than µ. But if we take t independent samples
(even pairwise independent will do) then the variance of the mean of these samples is σ2/t.
Hence by increasing t we can get a better estimate of µ.

1 Estimating the cardinality of a set that’s too large to store

Continuing with the router example, suppose the router wishes to maintain a count of the
number of distinct IP addresses seen in the past hour. It would be too wasteful to actually
store all the IP addresses; an approximate count is fine. This is also the application alluded
to in the quote at the start of the lecture.

1

2

Idea: Pick k random hash functions h1, h2, . . . , hk that map a 128-bit address to a ran-
dom real number in [0, 1]. (For now let’s suppose that these are actually random functions.)
Now maintain k registers, initialized to 0. Whenever a packet whizzes by, and its IP address
is x, compute hi(x) for each i. If hi(x) is less than the number currently stored in the ith
register, then write hi(x) in the ith register.

Let Yi be the random variable denoting the contents of the ith register at the end. (It
is a random variable because the hash function was chosen randomly. The packet addresses
are not random.) Realize that Yi is nothing but the lowest value of hi(x) among all IP
addresses seen so far.

Suppose the number of distinct IP addresses seen is N . This is what we are trying to
estimate.

Fact: E[Yi] = 1
N+1 and the variance of Yi is 1/(N + 1)2.

The expectation looks intuitively about right: the minimum of N random elements in
[0, 1] should be around 1/N .

Let’s do the expectation calculation. The probability that Yi is z is the probability that
one of the IP addresses mapped to z and all the others mapped to numbers greater than z.

E[Yi] =

∫ z=1

z=0
(1− z)Ndz =

1

N + 1
.

(Here’s a slick alternative proof of the 1/(N + 1) calculation. Imagine picking N + 1
random numbers in [0, 1] and consider the chance that the N + 1th element is the smallest.
By symmetry this chance is 1/(N + 1). But this chance is exactly the expected value of the
minimum of the first N numbers. QED.)

Since we picked k random hash functions, the Yi’s are iid. Let Y is be their mean. Then
the variance of Y is 1/k(N + 1)2. Thus if 1/k is less than ε2 the standard deviation is
less than ε/(N + 1), whereas the mean is 1/(N + 1). Thus with constant probability the
estimate 1/Y is within (1 + ε) factor of N .

All this assumed that the hash functions are random functions from 128-bit numbers
to [0, 1]. Let’s consider why it suffices to pick hash functions from a pairwise independent
family, albeit now with our estimate will only be correct up to some constant factor.

What is the probability that we hash N different elements using such a hash function
and the smallest element is less than 1/3N? For each element x, Pr[h(x) < 1/3N] is at
most 1/3N , so by the union bound, the probability in question is at most N ×1/3N = 1/3.
Similarly, the probability that Pr[∃x : h(x) ≤ 1/N] can be lowerbounded by the inclusion-
exclusion bound.

Lemma 1 (inclusion-exclusion bound)
Pr[A1 ∨A2 . . .∨An], the probability that at least one of the events A1, A2, . . . , An happens,
satisfies ∑

i

Pr[Ai]−
∑
ij

Pr[Ai ∧Aj] ≤ Pr[A1 ∨A2 . . . ∨An] ≤
∑
i

Pr[Ai].

Since our events are pairwise independent we obtain

Pr[∃x : h(x) ≤ 1/N] ≥ N × 1

N
−
(
N

2

)
1

N2
≥ 1

2
.

3

Using a little more work it can be shown that with probability at least 1/2 the minimum
hash is in the interval [1/3N, 3/N]. (NB: These bounds can be improved if the hash is from
a 4-wise independent family.) Thus one can take k hashes and see if the majority of the
min values are contained in some interval of the type [1/3x, 3/x]. Then x is our estimate
for N .

2 Estimating document similarity

One of the aspects of the data deluge on the web is that there are many duplicate copies
of the same thing. Sometimes the copies may not be exactly identical. Websites may be
mirrored but some copies may be out of date. The same news article or web post may
be reposted many times, sometimes with editorial comments. By detecting duplicates and
near-duplicates internet companies can often save on storage by an order of magnitude.

We present a technique called similarity hashing that allows this approximately. It
is a hashing method such that the hash preserves some ”sketch” of the document. Two
document’s similarity can be estimate by comparing their hashes. This is an example of a
burgeoning research area of hashing while preserving some semantic information. In general
finding similar items in databases is a big part of data mining (find customers with similar
purchasing habits, similar tastes, etc.). Today’s simple hash is merely a way to dip our toes
in these waters.

So think of a document as a set: the set of words appearing in it. The Jaccard similarity
of documents/sets A,B is defined to be |A ∩B| / |A ∪B|. This is 1 iff A = B and 0 iff the
sets are disjoint.

Basic idea: Pick a random hash function mapping the underlying universe of elements
to [0, 1]. Define the hash of a set A to be the minimum of h(x) over all x ∈ A. Then
by symmetry, Pr[hash(A) = hash(B)] is exactly the Jaccard similarity. (Note that if two
elements x, y are different then Pr[h(x) = h(y)] is 0 when the hash is real-valued. Thus the
only possibility of a collision arises from elements in the intersection of A,B.) Thus one
could pick k random hash functions and take the fraction of instances of hash(A) = hash(B)
as an estimate of the Jaccard similarity. This has the right expectation but we need to repeat
with k different hash functions to get a better estimate.

The analysis goes as follows. Suppose we are interested in flagging pairs of documents
whose Jaccard-similarity is at least 0.9. Then we compute k hashes and flag the pair if at
least 0.9− ε fraction of the hashes collide. Chernoff bounds imply that if k = Ω(1/ε2) this
flags all document pairs that have similarity at least 0.9 and does not flag any pairs with
similarity less than 0.9− 3ε.

To make this method more realistic we need to replace the idealized random hash func-
tion with a real one and analyse it. That is beyond the scope of this lecture. Indyk showed
that it suffices to use a k-wise independent hash function for k = Ω(log(1/ε) to let us es-
timate Jaccard-similarity up to error ε. Thorup recently showed how to do the estimation
with pairwise independent functions. This analysis seems rather sophisticated; let me know
if you happen to figure it out.

Bibliography

4

1. Broder, Andrei Z. (1997), On the resemblance and containment of documents, Com-
pression and Complexity of Sequences: Proceedings, Positano, Amalfitan Coast, Salerno,
Italy, June 11-13, 1997.

2. Broder, Andrei Z.; Charikar, Moses; Frieze, Alan M.; Mitzenmacher, Michael (1998),
Min-wise independent permutations, Proc. 30th ACM Symposium on Theory of Com-
puting (STOC ’98).

3. Gurmeet Singh, Manku; Das Sarma, Anish (2007), Detecting near-duplicates for web
crawling, Proceedings of the 16th international conference on World Wide Web, ACM.

4. Indyk, P (1999). A small approximately min-wise independent family of hash func-
tions. Proc. ACM SIAM SODA.

5. Thorup, M. (2013). http://arxiv.org/abs/1303.5479.

