
princeton univ. F’13 cos 521: Advanced Algorithm Design

Lecture 19: Going with the slope: offline, online, and
randomly

Lecturer: Sanjeev Arora Scribe:

This lecture is about gradient descent, a popular method for continuous optimization
(especially nonlinear optimization).

We start by recalling that allowing nonlinear constraints in optimization leads to NP-
hard problems in general. For instance the following single constraint can be used to force
all variables to be 0/1. ∑

i

x2i (1− xi)2 = 0.

Notice, this constraint is nonconvex. We saw in earlier lectures that the Ellipsoid method
can solve convex optimization problems efficiently under fairly general conditions. But it is
slow in practice.

Gradient descent is a popular alternative because it is simple and it gives some kind
of meaningful result for both convex and nonconvex optimization. It tries to improve the
function value by moving in a direction related to the gradient (i.e., the first derivative).
For convex optimization it gives the global optimum under fairly general conditions. For
nonconvex optimization it arrives at a local optimum.

Figure 1: For nonconvex functions, a local optimum may be different from the global
optimum

We will first study unconstrained gradient descent where we are simply optimizing a
function f(·). Recall that the function is convex if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
for all x, y and λ ∈ [0, 1].

1 Gradient descent for convex functions: univariate case

For warm up let’s describe gradient descent in the univariate case, which will be familiar
from freshman calculus. Recall the Taylor expansion of a function all of whose derivatives
exist at x:

1

2

f(x+ η) = f(x) + ηf ′(x) +
η2

2
f ′′(x) +

η3

3!
f ′′′(x) · · · . (1)

The function is convex if f ′′(x) ≥ 0 for all x. This means that f ′(x) is an increasing function
of x. The minimum is attained when f ′(x) = 0 since f ′(x) keeps increasing to the left and
right of that. Thus the global minimum is unique. The function is concave if f ′′(x) ≤ 0 for
all x; such functions have a unique maximum.

Examples of convex functions: ax + b for any a, b ∈ <; exp(ax) for any a ∈ <; xα for
x ≥ 0, α ≥ 1 or α ≤ 0. Another interesting example is the negative entropy: x log x for
x ≥ 0.

Examples of concave functions: ax+ b for any a, b ∈ <; xα for α ∈ [0, 1] and x ≥ 0; log x
for x ≥ 0.

Figure 2: Concave and Convex Function

To minimize a convex function by gradient descent we start at some x0 and at step i
update xi to xi+1 = xi+ηf ′(x) for some small η < 0. In other words, move in the direction
where f decreases. If we ignore terms that involve η3 or higher, then

f(xi+1) = f(xi) + ηf ′(xi) +
η2

2
f ′′(xi).

and the best value for η (which gives the most reduction in one step) is η = −f ′(x)/2f ′′(x),
which gives

f(xi+1) = f(xi)−
(f ′(xi))

2

2f ′′(xi)
.

Thus the algorithm makes progress so long as f ′′(xi) > 0. Convex functions that satisfy
f ′′(x) > 0 for all x are called strongly convex.

The above calculation is the main idea in Newton’s method, which you may have seen
in calculus. Proving convergence requires further assumptions.

2 Convex multivariate functions

A convex function on <n, if it is differentiable, satisfies the basic following basic inequality,
which says that the function lies “above ”the tangent plane at any point.

f(x+ z) ≥ f(x) + Of(x) · z ∀x, y. (2)

3

Here Of(x) is the vector of first order derivatives where the ith coordinate is ∂f/∂xi and
called the gradient. Sometimes we restate it equivalently as

Of(x) · (y − x) ≤ f(y)− f(x) ∀x, z (3)

3.1 Basic properties and examples 69

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

Figure 3.2 If f is convex and differentiable, then f(x)+∇f(x)T (y−x) ≤ f(y)
for all x, y ∈ dom f .

is given by

ĨC(x) =

{
0 x ∈ C
∞ x &∈ C.

The convex function ĨC is called the indicator function of the set C.

We can play several notational tricks with the indicator function ĨC . For example
the problem of minimizing a function f (defined on all of Rn, say) on the set C is the
same as minimizing the function f + ĨC over all of Rn. Indeed, the function f + ĨC

is (by our convention) f restricted to the set C.

In a similar way we can extend a concave function by defining it to be −∞
outside its domain.

3.1.3 First-order conditions

Suppose f is differentiable (i.e., its gradient ∇f exists at each point in dom f ,
which is open). Then f is convex if and only if dom f is convex and

f(y) ≥ f(x) + ∇f(x)T (y − x) (3.2)

holds for all x, y ∈ dom f . This inequality is illustrated in figure 3.2.
The affine function of y given by f(x)+∇f(x)T (y−x) is, of course, the first-order

Taylor approximation of f near x. The inequality (3.2) states that for a convex
function, the first-order Taylor approximation is in fact a global underestimator of
the function. Conversely, if the first-order Taylor approximation of a function is
always a global underestimator of the function, then the function is convex.

The inequality (3.2) shows that from local information about a convex function
(i.e., its value and derivative at a point) we can derive global information (i.e., a
global underestimator of it). This is perhaps the most important property of convex
functions, and explains some of the remarkable properties of convex functions and
convex optimization problems. As one simple example, the inequality (3.2) shows
that if ∇f(x) = 0, then for all y ∈ dom f , f(y) ≥ f(x), i.e., x is a global minimizer
of the function f .

Figure 3: A differentiable convex function lies above the tangent plane f(x)+Of(x) ·(y−x)

If higher derivatives also exist, the multivariate Taylor expansion for an n-variate func-
tion f is

f(x+ y) = f(x) + Of(x) · y + yTO2f(x)y + · · · . (4)

Here O2f(x) denotes the n × n matrix whose i, j entry is ∂2f/∂xi∂xj and it is called the
Hessian. It can be checked that f is convex if the Hessian is positive semidefinite; this

Figure 4: The Hessian

means yTO2fy ≥ 0 for all y.

Example 1 The following are some examples of convex functions.

• Norms. Every `p norm is convex on <n. The reason is that a norm satisfies triangle
inequality: |x+ y| ≤ |x|+ |y| ∀x, y.

• f(x) = log(ex1 + ex2 + · · ·+ exn) is convex on <n. This fact is used in practice as an
analytic approximation of the max function since

max {x1, . . . , xn} ≤ f(x)+ ≤ max {x1, . . . , xn}+ log n.

4

Turns out this fact is at the root of the multiplicative weight update method; the
algorithm for approximately solving LPs that we saw in Lecture 10 can be seen as
doing a gradient descent on this function, where the xi’s are the slacks of the linear
constraints. (For a linear constraint aT z ≥ b the slack is aT z − b.)

• f(x) = xTAx where A is positive semidefinite. Its Hessian is A.

Some important examples of concave functions are: geometric mean (
∏n
i=1 xi)

1/n and log-

determinant (defined for X ∈ <n2
as log det(X) where X is interpreted as an n×n matrix).

Many famous inequalities in mathematics (such as Cauchy-Schwartz) are derived using
convex functions. 2

Example 2 (Linear equations with PSD constraint matrix) In linear algebra you
learnt that the method of choice to solve systems of equations Ax = b is Gaussian elimina-
tion. In many practical settings its O(n3) running time may be too high. Instead one does
gradient descent on the function 1

2x
TAx− bTx, whose local optimum satisfies Ax = b. If A

is positive semidefinite this function is also convex since the Hessian is A. Actually in real
life these are optimized using more advanced methods such as conjugate gradient. Also, if
A is diagonal dominant, a stronger constraint than PSD, then Spielman and Teng (2003)
have shown how to solve this problem in time that is near linear in the number of nonzero
entries.

Example 3 (Least squares) In some settings we are given a set of points a1, a2, . . . , am ∈
<n and some data values b1, b2, . . . , bm taken at these points by some function of interest.
We suspect that the unknown function is a line, except the data values have a little error in
them. One standard technique is to find a least squares fit: a line that minimizes the sum of
squares of the distance to the datapoints to the line. The objective function is min |Ax− b|22
where A ∈ <m×n is the matrix whose rows are the ai’s. (We saw in an earlier lecture that
the solution is also the first singular vector.) This objective is just xTATAx−2(Ax)T b+bT b,
which is convex.

In the univariate case, gradient descent has a choice of only two directions to move in: right
or left. In n dimensions, it can move in any direction in <n. The most direct analog of the
univariate method is to move diametrically opposite from the gradient.

The most direct analogue of our univariate analysis would be to assume a lowerbound
of yTO2fy for all y (in other words, a lowerbound on the eigenvalues of O2f). This will be
explored in the homework. In the rest of lecture we will only assume (2).

3 Gradient Descent for Constrained Optimization

As studied in previous lectures, constrained optimization consists of solving the following
where K is a convex set and f(·) is a convex function.

min f(x) s.t. x ∈ K.

5

Example 4 (Spam classification via SVMs) This example will run through the entire
lecture. Support Vector Machine is the name in machine learning for a linear classifier; we
saw these before in Lecture 5. Suppose we wish to train the classifier to classify emails
as spam/nonspam. Each email is represented using a vector that gives the frequencies of
various words in it (”bag of words” model). Say X1, X2, . . . , XN are the emails, and for
each there is a corresponding bit yi ∈ {−1, 1} where yi = 1 means Xi is spam. SVMs use
a linear classifier to separate spam from nonspam. If spam were perfectly identifiable by a
linear classfier, there would be a function W · x such that W · Xi ≥ 1 if Xi is spam, and
W ·Xi ≤ −1 if not. In other words,

1− yiWXi ≤ 0 ∀i (5)

Of course, in practice a linear classifier makes errors, so we have to allow for the possibility
that (5) is violated by some Xi’s. Thus a more robust version of this problem is

min
∑

i

Loss(1−W · (yiXi)) + λ |W |22 , (6)

where Loss(·) is a function that penalizes unsatisfied constraints according to the amount
by which they are unsatisfied, and λ > 0 is a scaling constant. (Note that W is the vector
of variables.) The most obvious loss function would be to count the number of unsatisfied
constraints but that is nonconvex. For this lecture we focus on convex loss functions; the
simplest is the hinge loss: Loss(t) = max {0, t}. Then the function in (6) is convex.

If x ∈ K is the current point and we use the gradient to step to x+ M x then in general
this new point will not be in K. Thus one needs to do a projection.

Definition 1 The projection of a point y on K is x ∈ K that minimizes |y − x|2. (It is
also possible to use other norms than `2 to define projections.)

A projection oracle for the convex body a black box that, for every point y, returns its
projection on K.

Often convex sets used in applications are simple to project to.

Example 5 If K = unit sphere, then the projection of y is y/ |y|2.

Here is a simple algorithm for solving the constrained optimization problem. The algo-
rithm only needs to access f via a gradient oracle and K via a projection oracle.

Definition 2 (Gradient Oracle) A gradient oracle for a function f is a black box that,
for every point z, returns Of(z) the gradient valuated at point z. (Notice, this is a linear
function of the form gx where g is the vector of partial derivatives evaluated at z.)

The same value of η will be used throughout.

Gradient Descent for Constrained Optimization
Let η == D

G
√
T

.

Repeat for i = 0 to T
y(i+1) ← x(i) + ηOf(x(i))
x(i+1) ← Projection of y(i+1) on K.

At the end output z =
1

T

∑
i x

(i).

6

Let us analyse this algorithm as follows. Let x∗ be the point where the optimum
is attained. Let G denote an upperbound on |Of(x)|2 for any x ∈ K, and let D =
maxx,y∈K |x− y|2 be the so-called diameter of K. To ensure that the output z satisfies

f(z) ≤ f(x∗) + ε we will use T = 4D2G2

ε2
.

Since x(i) is a projection of y(i) on K we have

∣∣∣x(i+1) − x∗
∣∣∣
2
≤
∣∣∣y(i+1) − x∗

∣∣∣
2

=
∣∣∣x(i) − x∗ − ηOf(x(i))

∣∣∣
2

=
∣∣∣x(i) − x∗

∣∣∣
2

+ η2
∣∣∣O(f)(x(i))

∣∣∣
2

+ 2ηOf(x(i)) · (x(i) − x∗)

Reorganizing and using definition of G we obtain:

Of(x(i)) · (x∗ − x(i)) ≤ 1

2η
(
∣∣∣x(i) − x∗

∣∣∣
2
−
∣∣∣x(i+1) − x∗

∣∣∣
2
) +

η

2
G2

Using (3), we can lowerbound the left hand side by f(x(i))− f(x∗). We conclude that

f(x(i))− f(x∗) ≤ 1

2η
(
∣∣∣x(i) − x∗

∣∣∣
2
−
∣∣∣x(i+1) − x∗

∣∣∣
2
) +

η

2
G2. (7)

Now sum the previous inequality over i = 1, 2, . . . , T and use the telescoping cancellations
to obtain

T∑

i=1

(f(x(i))− f(x∗)) ≤ 1

2η
(
∣∣∣x(0) − x∗

∣∣∣
2
−
∣∣∣x(T) − x∗

∣∣∣
2
) +

Tη

2
|G|2 .

Finally, by convexity f(1
T

∑
i x

(i)) ≤ 1
T

∑
i f(x(i)) so we conclude that the point z =

1
T

∑
i x

(i) satisfies

f(z)− f(z∗) ≤ D2

2ηT
+
η

2
G2.

Now set η = D
G
√
T

to get an upperbound on the right hand side of 2DG√
T
. Since T = 4D2G2

ε2

we see that f(z) ≤ f(x∗) + ε.

4 Online Gradient Descent

Zinkevich noticed that the analysis of gradient descent applies to a much more generalized
scenario. There is a convex set K given via a projection oracle. For i = 1, 2, . . . , T we are
presented at step i a convex function fi. At step i we have to put forth our guess solution
x(i) ∈ K but the catch is that we do not know the functions that will be presented in future.
So our online decisions have to be made such that if x∗ is the point w that minimizes∑

i fi(w) (i.e. the point that we would have chosen in hindsight after all the functions were
revealed) then the following quantity (called regret) should stay small:

∑

i

fi(x
(i))− fi(x∗).

7

The above gradient descent algorithm can be adapted for this problem by replacing
Of(x(i)) by Ofi(x(i)). This algorithm is called Online Gradient Descent. The earlier analysis
works essentially unchanged, once we realize that the left hand side of (7) has the regret
for trial i. Summing over i gives the total regret on the left side, and the right hand side is
analysed and upperbounded as before. Thus we have shown:

Theorem 1 (Zinkevich 2003)
If D is the diameter of K and G is an upperbound on the norm of the gradient of any of

the presented functions, and η is set to D
G
√
T

then the regret per step after T steps is at

most 2DG√
T
.

Example 6 (Spam classification against adaptive adversaries) We return to the
spam classification problem of Example 4, with the new twist that this classifier changes over
time, as spammers learn to evade the current classifier. Thus there is no fixed distribution
of spam emails and thus it is fruitless to train the classifier at one go. It is better to have
it improve and adapt itself as new examples come up. At step t the optimum classifier ft
may not be known and is presented using a gradient oracle. This function just corresponds
to the term in (6) corresponding to the latest email that was classfied as spam/nonspam.
Zinkevich’s theorem implies that our sequence of classifiers has low regret.

5 Stochastic Gradient Descent

Stochastic gradient descent is a variant of the algorithm in Section 3 that works with convex
functions presented using an even weaker notion: an expected gradient oracle. Given a point
z, this oracle returns a linear function gx+ f that is drawn from a probability distribution
Dz such that the expectation Eg,f∈Dz [gx+ f] is exactly the gradient of f at z.

Example 7 (Spam classification using SGD) Returning to the spam classification prob-
lem of Example 4, we see that the function in (6) is a sum of many similar terms. If we
randomly pick a single term and compute just its gradient (which is very quick to do!)
then by linearity of expectations, the expectation of this gradient is just the true gradient.
Thus we see that the expected gradient oracle may be a much faster computation than the
gradient oracle (a million times faster if the number of email examples is a million!). In fact
this setting is not atypical; often the convex function of interest is a sum of many similar
terms.

Stochastic gradient descent uses Online Gradient Descent (OGD). Let gi · x be the
gradient at step i. Then we use this function —which is a linear function and hence

convex— as fi in the ith step of OGD. Let z =
1

T

∑T
i=1 x

(i). Let x∗ be the point in K where

f attains its minimum value.

Theorem 2
E[f(z)] ≤ f(x∗) +

2DG√
T

, where D is the diameter as before and G is an upperbound of the

norm of any gradient vector ever output by the oracle.

8

Proof:

f(z)− f(x∗) ≤ 1

T

∑

i

(f(x(i))− f(x∗)) by convexity of f

≤ 1

T

∑

i

Of(x(i)) · (x(i) − x∗) using (2)

=
1

T

∑

i

E[gi · (x(i) − x∗)] Since expected gradient is the true gradient

=
1

T

∑

i

E[fi(x
(i)) − fi(x∗)] Defn. of fi

=
1

T
E[
∑

i

(fi(x
(i))− fi(x∗)]

and the theorem now follows since the expression in the E[·] is just the regret, which is always
upperbounded by the quantity given in Zinkevich’s theorem, so the same upperbound holds
also for the expectation. 2

6 Hint of more advanced ideas

We covered some of these in the Friday special section.
Gradient descent algorithms come in dozens of flavors. (The Boyd-Vandenberghe book

is a good resource. and Nesterov’s lecture notes are terser but still have a lot of intuition.)
Surprisingly, just going along the gradient (more precisely, diametrically opposite direc-

tion from gradient) is not always the best strategy. Steepest descent direction is defined by
quantifying the best decrease in the objective function obtainable via a step of unit length.
The catch is that different norms can be used to define “unit length.”For example, if dis-
tance is measured using `1 norm, then the best reduction happens by picking the largest
coordinate of the gradient vector and reducing the corresponding coordinate in x (coordi-
nate descent). The classical Newton method is a subcase where distance is measured using
the ellipsoidal norm defined using the Hessian.

Gradient descent ideas underlie recent advances in algorithms for problems like Spielman-
Teng style solver for Laplacian systems, near-linear time approximation algorithms for
maximum flow in undirected graphs, and Madry’s faster algorithm for maximum weight
matching.

Bibliography

1. Convex Optimization, S. Boyd and L. Vandenberghe. Cambridge University Press.
(pdf available online.)

2. Introductory Lectures on Convex Optimization: A Basic Course. Y. Nesterov. Springer
2004.

3. Lecture notes on online optimization. Elad Hazan.

4. Lecture notes on online optimization. S. Bubeck.

