
princeton univ. F’13 cos 521: Advanced Algorithm Design

Lecture 13: Intrinsic dimensionality of data and low-rank
approximations: SVD

Lecturer: Sanjeev Arora Scribe:

Today’s topic is a technique called singular value decomposition. We’ll take two views of
it, and then see that there is a surprising algorithm for it.

1 View 1: Inherent dimensionality of a dataset

In many settings we have a set of m vectors v1, v2, . . . , vm in <n. Think of n as large,
and maybe m also. We would like to represent vi’s using fewer number of dimensions.
We saw one technique in Lecture 11, namely, dimension reduction. Unfortunately, as we
mentioned there, dimension reduction is only known in the setting where we only care about
the pairwise `2 distance of the vectors.

But in many settings the vi’s have a special structure: they are well-approximated by
some low-dimensional set of vectors. By this we mean that for some small k, there are
vectors u1, u2, . . . , uk ∈ <n such that every vi is close to the span of u1, u2, . . . , uk. This
means that there are numbers αi1, . . . , αik ∈ < such that∣∣∣∣∣∣vi −

∑
j

αijuj

∣∣∣∣∣∣
2

2

≈ small (1)

Example 1 (Understanding shopping data) Suppose a marketer is trying to assess
shopping habits. They observe the shopping behaviour of m shoppers with respect to n
goods: how much of each good did they buy? This gives m vectors in <n.

The simplest model for this would be: every shopper starts with a budget, and allocates
it equally among all m items. Then if Bi is the budget of shopper i and pj is the price for
item j the ith vector is 1

n(Bi
p1
, Bi
p2
, . . . , Bi

pn
). Denoting by ~u the vector of price inverses, that

is (1/p1, 1/p2, . . . , 1/pn) this is just Bi
n ~u. We conclude that the data is 1-dimensional: just

scalar multiples of ~u.
Now maybe the above model is too unrealistic and doesn’t quite fit the data well. Then

one could try another model. We assume that the goods partition into k categories like
produce, canned goods, etc. S1, S2, . . . , Sk. These categories are unknown to us. Assume
furthermore that the ith shopper designates a budget Bit for the tth category, and then
divides this budget equally among goods in that category. Let ut ∈ <n denotes the vector
that is 0 for goods not in St and the inverse prices for goods in St. The the quantities of
each good purchased by shopper i are given by the vector

∑k
t=1

Bit
|St|ut. In other words, this

model predicts that the dataset is k-dimensional.
Of course, no model is exact so the data set will only be approximately k-dimensional

in the sense of (1).
One can consider alternative probabilistic models of data generation where the shopper

picks items randomly from each category. You’ll analyse that in the next homework.

1

2

Example 2 (Understanding microarray data in biology) The number of genes in
your cell is rather large, and their activity levels —which depend both upon your genetic
code and environmental factors— determine your body’s functioning. Microarrays are tiny
”chips” of chemicals sites that can screen the activity levels —aka gene expression levels—of
a large number of genes in one go, say n = 10, 000 genes. Typically these genes would have
been chosen because they are suspected to be related to the phenomenon being studied, say
a particular disease, immune reaction etc. If one tests m individuals, one ends with with m
vectors in <n.

In practice it is found that this gene expression data is low-dimensional. This means
that there are say 4 directions u1, u2, u3, u4 such that most of the vectors are close to their
span. These new axis directions usually have biological meaning; eg groups of genes whose
expression (up or down) is controlled by common regulatory mechanisms.

We conclude that finding the αij ’s and u’s as in (1) would be nice. It seems like a
difficult nonlinear optimization problem. Surprisingly, it is actually fairly easy it is a built-
in primitive in Matlab. Let’s discuss why its easy, which I find one of the miracles of math
(one of few natural nonlinear problems that are solvable in polynomial time).

2 View 2: Low rank matrix approximations

We have an m× n matrix M . We suspect it is actually a noisy version of a rank-k matrix,
say M̃ . We would like to find out M̃ . One natural idea is to solve the following optimization
problem

min
∑
ij

∣∣∣Mij − M̃ij

∣∣∣2 s.t. M̃ is a rank-k matrix (2)

Again, seems like a hopeless nonlinear optimization problem. Peer a little harder and you
realize that a rank-k matrix is just one whose rows are linear combinations of k independent
vectors. So this is nothing but problem (1)!

Example 3 (Planted bisection/Hidden Bisection) Graph bisection the problem where
we are given a graph G = (V,E) and wish to partition V into two equal sets S, S such that
we minimize the number of edges between S, S. It is NP-complete. Let’s consider the
following average case version.

Create a random graph on n nodes. Partition nodes into S1, S2. Within S1, S2 put each
edge with prob. p, and between S1, S2 put each edge with prob. q where q < p. Now
give this to the algorithm. Note that the algorithm doesn’t know S1, S2. It has to find the
optimum bisection.

It is possible to show using Chernoff bounds that if q = Ω(lognn) then with high proba-
bility the optimum bisection in the graph is the planted one, namely, S1, S2. How can the
algorithm recover this partition?

The observation in Figure 1 suggests that the adjacency matrix is close to a rank 2
matrix shown there: the block within S1, S2 have value p in each entry; the blocks between
S1, S2 have q in each entry.

Maybe if we can solve (2) with k = 2 we are done? This turns out to be correct as we
will see in next lecture.

3

content...

Figure 1: Planted Bisection problem: Edge probability is p within S1, S2 and q between
S1, S2 where q < p. On the right hand side is the adjacency matrix. If we somehow knew
S1, S2 and grouped the corresponding rows and columns together, and squint at the matrix
from afar, we’d see more density of edges within S1, S2 and less density between S1, S2.
Thus from a distance the adjacency matrix looks like a rank 2 matrix.

One can study planted versions of many other NP-hard problems as well.

Many practical problems involve graph partitioning. For instance, image recognition
involves first partitioning the image into its component pieces (sky, ground, tree, etc.); a
process called image segmentation in computer vision. This is done by graph partitioning
on a graph defined on pixels where edges denote pixel-pixel similarity. Perhaps planted
graphs are a better model for such real-life settings than worst-case graphs.

3 Singular Value Decomposition

Now we describe the tool that lets us solve the above problems.
For simplicity let’s start with a symmetric matrix M . Suppose its eigenvalues are

λ1, . . . , λn in decreasing order by absolute value, and the corresponding eigenvectors (scaled
to be unit vectors) are e1, e2, . . . , en. (These are column vectors.) Then M has the following
alternative representation.

Theorem 1 (Spectral decomposition)
M =

∑
i λieie

T
i .

Proof: At first sight, the equality does not even seem to pass a “typecheck”; a matrix on
the left and vectors on the right. But then we realize that eie

T is actually an n×n matrix,
albeit of rank 1. So the right hand side is indeed a matrix. Let us call it B.

Any matrix can be specified completely by describing how it acts on an orthonor-
mal basis. By definition, M is the matrix that acts as follows on the orthonormal set

4

{e1, e2, . . . , en}: Mej = λjej . How does B act on this orthonormal set? We have

Bej = (
∑
i

λieie
T
i)ej

=
∑
i

λiei(e
T
i ej) (distributivity and associativity of matrix multiplication)

= λjej

since eTi ej =< ei, ej > is 1 if i = j and 0 else. We conclude that B = M . 2

Theorem 2 (Best rank k approximation)
The solution M̃ to (2) is simply the sum of the first k terms in the previous Theorem.

The proof of this theorem uses the following, which is not too hard to prove from the
spectral decomposition using definitions.

Theorem 3 (Courant-Fisher)
If e1, e2, . . . , en are the eigenvectors as above then:

1. e1 is the unit vector that maximizes |Mx|22.

2. ei+1 is the unit vector that is orthogonal to e1, e2, . . . , ei and maximizes |Mx|22.

Let’s prove Theorem 2 for k = 1 by verifying that the first term of the spectral de-
composition gives the best rank 1 approximation to M . Denoting the rows of M as
M1,M2, . . . ,Mn, we are trying to find a unit vector x such that the Mi’s have small squared
distances to the line defined by x. Thus we are trying to minimize∑

i

|Mi− < Mi, x > x|2 =
∑
i

|Mi|2 −
∑
i

|< Mi, x >|2 .

This minimization is tantamount to maximising∑
i

|< Mi, x >|2 = |Mx|2 , (3)

which by the Courant-Fisher theorem is minimized for x = e1. Thus the best rank 1
approximation to M is the matrix whose ith row is < Mi, e1 > eT1 , which of course is
λ1e1ie

T
1 . Thus the rank 1 matrix approximation is λ1e

T
1 e1, which proves the theorem for

k = 1. The proof of Theorem 2 for general k follows similarly by induction.

3.1 General matrices: Singular values

Now we look at general matrices that are not symmetric. The notion of eigenvalues and
eigenvectors have to be modified. The following theorem is proved similarly as in the
symmetric case but with a bit more tedium.

5

Theorem 4 (Singular Value Decomposition and best rank-k-approximation)
An m × n real matrix has t ≤ min {m,n} nonnegative real numbers σ1, σ2, . . . , σt (called
singular values) and two sets of unit vectors U = {u1, u2, . . . , ut} which are in <m and
V = v1, v2, . . . , vt ∈ <n (all vectors are column vectors) where U, V are orthogonormal sets
and

uTi M = σivi and Mvi = σiu
T
i (4)

Furthermore, M can be represented as

M =
∑
i

σiuiv
T
i . (5)

The best rank k approximation to M consists of taking the first k terms of (5) and discarding
the rest.

This solves problems (1) and (2). Next time we’ll go into some detail of the algorithm
for computing them. In practice you can just use matlab or another package.

4 View 3: Directions of Maximum Variance

The above proof of Theorem 2, especially the subcase k = 1 we proved, also shows yet
another view of SVD which is sometimes useful in data analysis. Let us again see this
in the case of symmetric matrices. Suppose we shift the given points M1,M2, . . . ,Mn so
that their mean 1

n

∑
iMi is the origin. Then the rank-1 SVD corresponds to the direction

x where the projections of the given data points —a sequence of n real numbers— have
maximum variance. Note that this variance is exactly the quantity in (3). The second
SVD direction corresponds to directions with maximum variance after we have removed the
component along the first direction, and so on.

bibliography

1. O. Alter, P. Brown, and D. Botstein. Singular value decomposition for genome-wide
expression data processing and modeling. PNAS August 29, 2000 vol. 97 no. 18

2. Relevant chapter of Hopcroft-Kannan book on data science. (link on course website)

