PRINCETON UNIV. F’13 cos 521: ADVANCED ALGORITHM DESIGN

Lecture 11: High Dimensional Geometry, Curse of
Dimensionality, Dimension Reduction

Lecturer: Sanjeev Arora Scribe:

High-dimensional vectors are ubiquitous in algorithms and this lecture seeks to introduce
some common properties of these vectors. We encounter the so-called curse of dimension-
ality which refers to the fact that algorithms are simply harder to design in high dimensions
and often have a running time exponential in the dimension. We also show that it is possible
to reduce the dimension of a dataset sometimes —and for some purposes.

Notation: For a vector z € R its fe-norm is |z|, = (3, 27)'/2 and the ¢;-norm is
|z|; = >, |zi|. For any two vectors z,y their Euclidean distance refers to |z —y|, and
Manhattan distance refers to |z — y|;.

We start with some useful generalizations of geometric objects to higher dimensional

geometry:

e The n-cube in R*: {(x1...7,,) : 0 < x; < 1}. To visualize this in R?, think of yourself
as looking at one of the faces, say 1 = 1. This is a cube in R and if you were
able to look in the fourth dimension you would see a parallel cube at 1 = 0. The
visualization in " is similar.

The volume of the n-cube is 1.

e The unit n-ball in R™: B, := {(z1..z,) : Y27 < 1}. Again, to visualize the ball in
R4, imagine you have sliced through it with a hyperplane, say z; = 1/2. This slice is
a ball in ®? of radius /1 — 1/22 = /32. Every parallel slice also gives a ball.

The volume of B, is % (assume n even if the previous expression bothers you),

. . 1
which is —5r5.

0.1 An approximate way to think about B,

A good approximation to picking a random point on the surface of B, is by choosing
random z; € {—1,1} independently for i« = 1..n and normalizing to get ﬁ(zl, iy Tp). A
better approximation is to pick each coordinate as a gaussian with mean 0 and variance
1/n. To get a point inside the ball, it is necessary to pick the distance from 0 randomly.
Note that the distance is not distributed uniformly: the density at radius r is proportional
to 1L

Remark: An exact way to pick a random point on the surface of B™ is to choose x; from
the normal distribution for ¢ = 1..n, and to normalize: %(xl, iy Tp,), Where [= (>, x?)1/2.

7

0.2 Funny facts

1. The volume of the unit n-ball tends to 0 as the dimension tends to oco.

2. For any ¢ > 1, a (1 — 1) - fraction of the volume of the n-ball lies in a strip of width

O(\/Ck’%). A strip of width a is B, intersected with {(x1,...,x,)|z1 € [-§, §]}.
3. If you pick 2 vectors on the surface of B,, independently, then with probability > 1— %,

Viogn

n

| cos(Og,y)| = O()s

where O, , is the angle between x and y. In other words, the 2 vectors are almost
orthogonal w.h.p. To prove this, we use the following lemma:

LEMMA 1
Suppose a is a unit vector in R". Let © = (x1,...,x,) € R"™ be chosen from the surface
of By, by choosing each coordinate at random from {1, —1} and normalizing by factor

%. Denote by X the random variable a - x = a;x;. Then:

Pr(lX|>1t) < e’

ProOOF: We have:
p=EX)=E)_ ax)=0

a?
o? = E[(Y_aixi)’] = B[Y_aiajrizj] =) aja; Blegag] =) o

Using the Chernoff bound, we see that,

S |-

Pr(lX|>1t) < e (5)? = g—nt?
O

COROLLARY 2
If two unit vectors x,y are chosen at random from R", then

—1
Pr <]cos(9m7y) >4/ Zg5> <e

Now, to get fact (3), put e = %

One consequence of the corollary is that if we pick say exp(0.01n) random vectors in n
dimensions, with reasonable probability every pair of them has inner product no more
than 0.1. By changing the constants, this inner product can be made an arbitrarily
small constant.

1 Curse of dimensionality

Suppose we have a set of vectors in d dimensions and given another vector we wish determine
its closest neighbor (in ¢ norm) to it. Designing fast algorithms for this in the plane (i.e.,

R2) uses the fact that in the plane there are only O(1) distinct points whose pairwise
distance is about 1 +¢. In R¢ there can be exp(d) such points.

Thus most algorithms —nearest neighbor, minimum spanning tree, point location etc.—
have a running time depending upon exp(d). This is the curse of dimensionality in algo-
rithms. (The term was invented by R. Bellman, who as we saw earlier had a knack for
giving memorable names.)

In machine learning and statistics sometimes the term refers to the fact that available
data is too sparse in high dimensions; different take on the same underlying phenomenon.

I hereby coin a new term: Blessing of dimensionality. This refers to the fact that many
phenomena become much clearer and easier to think about in high dimensions because one
can use simple rules of thumb (e.g., Chernoff bounds, measure concentration) which don’t
hold in low dimensions.

2 Dimension Reduction

Now we describe a central result of high-dimensional geometry (at least when distances are
measured in the £, norm). Problem: Given n points z!, 22, ..., 2" in R", we would like to
find n points u',u?,...,u" in R™ where m is of low dimension (compared to n) and the

metric restricted to the points is almost preserved, namely:
128 = 2la < [lu* = |l2 < (1 +€)||z) — 27|z Vi, j. (1)

The following main result is by Johnson & Lindenstrauss :

THEOREM 3
logn)

In order to ensure (1), m = O(=%") suffices.

The following ideas do not work to prove this theorem (as we discussed in class): (a)
take a random sample of m coordinates out of n. (b) Partition the n coordinates into m
subsets of size about n/m and add up the values in each subset to get a new coordinate.

PROOF: Choose m vectors z!, ..

from {4/ %, - %} Then consider the mapping from R" to "™ given by

2™ € RN™ at random by choosing each coordinate randomly

z— (z-atz 22, .,z ™).

In other words u’ = (2% - 2',2* - 22,...,2" - 2™) for i = 1,...,k. We want to show that
with positive probability, u!, ..., u* has the desired properties. This would mean that there
exists at least one choice of u', ..., u¥ satisfying inequality 1. To show this, first we write
the expression ||u — u?|| explicitly:

m n 2

. -

ot] =Z<Z) |
k=1 \i=1

Denote by z the vector z* — 27, and by u the vector u* —u/. So we get:

2
Jull? = i — P = 3° (z) |

k=1

Let X}, be the random variable (}_"; z2f)?. Its expectation is p = 1£||2||? (can be seen
similarly to the proof of lemma 1). Therefore, the expectation of ||ul|? is (1 +¢)||z||?. If we
show that ||u]|? is concentrated enough around its mean, then it would prove the theorem.
More formally, this is done in the following Chernoff bound lemma. O

LEMMA 4
There exist constants ¢y > 0 and ¢y > 0 such that:

L Pr(ful® > (14 B)p] < e=1#m
2. Prijul? < (1= B)p) < e=2m
Therefore there is a constant ¢ such that the probability of a "bad” case is bounded by:

Pr{([ull® > (14 B)w) v (Jull* < (1 = B)p)] < e~

Now, we have (%) random variables of the type [|u; — u;j||®. Choose 8 = §. Using the

union bound, we get that the probability that any of these random variables is not within
(1 £ 5) of their expected value is bounded by

n e—c%m)
2
(log n+log c)

So if we choose m > 8672, we get that with positive probability, all the variables
are close to their expectation within factor (14 §). This means that for all 4,5:

I3 .) . . I3 . .
(1= +a)l2" =2 < Jlu' =/ < (1+) (1 +)12 = 27|

Therefore, ‘ ' ' ‘
2 = 2|” < flu* =!I < (1+¢)?]2" = 27|,

and taking square root:
12 = 27| < Jlu* = || < (L+e)l|2" = 27|,

as required.

Question: The above dimension reduction preserves (approximately) fs-distances. Can
we do dimension reduction that preserves £; distance? This was an open problem for many
years until Brinkman and Charikar showed in 2004 that no such dimension reduction is
possible.

2.1 Locality preserving hashing

Suppose we wish to hash high-dimensional vectors so that nearby vectors tend to hash
into the same bucket. To do this we can do a random projection into say the cube in 5
dimensions. We discretise the cube into smaller cubes of size . Then there are 1/ smaller
cubes; these can be the buckets.

This is simplistic; more complicated schemes have been constructed. Things get even
more interesting when we are interested in ¢;-distance.

