
SSDAlloc: Hybrid SSD/RAM Memory Management Made Easy

Anirudh Badam and Vivek S. Pai
Princeton University

Abstract
We introduce SSDAlloc, a hybrid main memory manage-
ment system that allows developers to treat solid-state
disk (SSD) as an extension of the RAM in a system.
SSDAlloc moves the SSD upward in the memory hier-
archy, usable as a larger, slower form of RAM instead
of just a cache for the hard drive. Using SSDAlloc, ap-
plications can nearly transparently extend their memory
footprints to hundreds of gigabytes and beyond without
restructuring, well beyond the RAM capacities of most
servers. Additionally, SSDAlloc can extract 90% of the
SSD’s raw performance while increasing the lifetime of
the SSD by up to 32 times. Other approaches either
require intrusive application changes or deliver only 6–
30% of the SSD’s raw performance.

1 Introduction
An increasing number of networked systems today rely
on in-memory (DRAM) indexes, hashtables, caches and
key-value storage systems for scaling the performance
and reducing the pressure on their secondary storage de-
vices. Unfortunately, the cost of DRAM increases dra-
matically beyond 64GB per server, jumping from a few
thousand dollars to tens of thousands of dollars fairly
quickly; power requirements scale similarly, restricting
applications with large workloads from obtaining high
in-memory hit-rates that are vital for high-performance.

Flash memory can be leveraged (by augmenting
DRAM with flash backed memory) to scale the perfor-
mance of such applications. Flash memory has a larger
capacity, lower cost and lower power requirement when
compared to DRAM and a great random read perfor-
mance, which makes it well suited for building such ap-
plications. Solid State Disks (SSD) in the form of NAND
flash have become increasingly popular due to pricing.
256GB SSDs are currently around $700, and multiple
SSDs can be placed in one server. As a result, high-
end systems could easily augment their 64–128GB RAM
with 1–2TB of SSD.

Flash is currently being used as program memory via
two methods – by using flash as an operating system
(OS) swap layer or by building a custom object store on
top of flash. Swap layer, which works at a page granu-
larity, reduces the performance and also undermines the

lifetime of flash for applications with many random ac-
cesses (typical of the applications mentioned). For every
application object that is read/written (however small) an
entire page of flash is read/dirtied leading to an unnec-
essary increase in the read bandwidth and the number
of flash writes (which reduce the lifetime of flash mem-
ory). Applications are often modified to obtain high per-
formance and good lifetime from flash memory by ad-
dressing these issues. Such modifications not only need
a deep application knowledge but also require an exper-
tise with flash memory, hindering a wide-scale adoption
of flash. It is, therefore, necessary to expose flash via
a swap like interface (via virtual memory) while being
able to provide performance comparable to that of appli-
cations redesigned to be flash-aware.

In this paper, we present SSDAlloc, a hybrid
DRAM/flash memory manager and a runtime library
that allows applications to fully utilize the potential of
flash (large capacity, low cost, fast random reads and
non-volatility) in a transparent manner. SSDAlloc ex-
poses flash memory via the familiar page-based virtual
memory manager interface, but internally, it works at an
object granularity for obtaining high performance and for
maximizing the lifetime of flash memory. SSDAlloc’s
memory manager is compatible with the standard C pro-
gramming paradigms and it works entirely via the virtual
memory system. Unlike object databases, applications
do not have to declare their intention to use data, nor do
they have to perform indirections through custom han-
dles. All data maintains its virtual memory address for
its lifetime and can be accessed using standard pointers.
Pointer swizzling or other fix-ups are not required.

SSDAlloc’s memory allocator looks and feels much
like the malloc memory manager. When malloc
is directly replaced with SSDAlloc’s memory manager,
flash is used as a fully log-structured page store. How-
ever, when SSDAlloc is provided with the additional in-
formation of the size of the application object being allo-
cated, flash is managed as a log-structured object store.
It utilizes the object size information to provide the ap-
plications with benefits that are otherwise unavailable via
existing transparent programming techniques.

Using SSDAlloc, we have modified four systems built
originally using malloc: memcached [4] (a key-value
store), a Boost [1] based B+Tree index, a packet cache

1

Application Original
LOC

Edited
LOC

Throughput Gain vs
SSD Swap SSD Swap
Unmodified Write Log

Memcached 11,193 21 5.5 - 17.4x 1.4 - 3.5x
B+Tree Index 477 15 4.3 - 12.7x 1.4 - 3.2x
Packet Cache 1,540 9 4.8 - 10.1x 1.3 - 2.3x
HashCache 20,096 36 5.3 - 17.1x 1.3 - 3.3x

Table 1: SSDAlloc requires changing only the memory alloca-
tion code, typically only tens of lines of code (LOC). Depend-
ing on the SSD used, throughput gains can be as high as 17
times greater than using the SSD as swap. Even if the swap is
optimized for SSD usage, gains can be as high as 3.5x.

backend (for accelerating network links using packet
level caching), and the HashCache [9] cache index. As
shown in Table 1, all four systems show great benefits
when using SSDAlloc with object size information –

• 4.1–17.4 times faster than when using the SSD as a
swap space.

• 1.2–3.5 times faster than when using the SSD as a
log-structured swap space.

• Only 9–36 lines of code are modified (malloc re-
placed by SSDAlloc).

• Up to 31.2 times less data written to the SSD for
the same workload (SSDAlloc works at an object
granularity).

The rest of this paper is organized as follows: We de-
scribe related work and the motivation in Section 2. The
design is described in Section 3, and we discuss our im-
plementation in Section 4. Section 5 provides the evalu-
ation results, and we conclude in Section 6.

2 Motivation and Related Work
While alternative memory technologies have been cham-
pioned for more than a decade [10, 25], their attractive-
ness has increased recently as the gap between the pro-
cessor speed and the disk widened, and as their costs
dropped. Our goal in this paper is to provide a trans-
parent interface to using flash memory (unlike the ap-
plication redesign strategy) while acting in a flash-aware
manner to obtain better performance and lifetime from
the flash device (unlike the operating system swap).

Existing transparent approaches to using flash mem-
ory [18, 20, 23] cannot fully exploit flash’s performance
for two reasons – 1) Accesses to flash happen at a page
granularity (4KB), leading to a full page read/write to
flash for every access within that page. The write/erase
behavior of flash memory often has different expecta-
tions on usage, leading to a poor performance. Full pages
containing dirty objects have to be written to flash. This
behavior leads to write escalation which is bad not only
for performance but also for the durability of the flash
device. 2) If the application objects are small compared
to the page size, only a small fraction of RAM contains

useful objects because of caching at a page granularity.
Integrating flash as a filesystem cache can increase per-
formance, but the cost/benefit tradeoff of this approach
has been questioned before [21].

FlashVM [23] is a system that proposes using flash
as a dedicated swap device, that provides hints to the
SSD for better garbage collection by batching writes,
erases and discards. We propose using 16–32 times more
flash than DRAM and in those settings, FlashVM style
heuristic batching/aggregating of in-place writes might
be of little use purely because of the high write ran-
domness that our targeted applications have. A fully
log-structured system would be needed for minimizing
erases in such cases. We have built a fully log-structured
swap that we use as a comparison point, along with na-
tive linux swap, against the SSDAlloc system that works
at an object granularity.

Others have proposed redesigning applications to use
flash-aware data structures to explicitly handle the asym-
metric read/write behavior of flash. Redesigned applica-
tions range from databases (BTrees) [19, 24] and Web
servers [17] to indexes [6, 8] and key-value stores [7].
Working set objects are cached in RAM more efficiently
and the application aggregates objects when writing to
flash. While the benefits of this approach can be signifi-
cant, the costs involved and the extra development effort
(requires expertise with the application and flash behav-
ior) are high enough that it may deter most application
developers from going this route.

Our goal in this paper is to provide the right set of
interfaces (via memory allocators), so that both existing
applications and new applications can be easily adapted
to use flash. Our approach focuses on exposing flash only
via a page based virtual memory interface while inter-
nally working at an object level. Similar approach was
used in distributed object systems [12], which switched
between pages and objects when convenient using cus-
tom object handlers. We want to avoid using any custom
pointer/handler mechanisms to eliminate intrusive appli-
cation changes.

Additionally, our approach can improve the cost/ben-
efit ratio of flash-based approaches. If only a few lines of
memory allocation code need to be modified to migrate
an existing application to a flash-enabled one with per-
formance comparable to that of flash-aware application
redesign, this one-time development cost is low com-
pared to the cost of high-density memory. For exam-
ple, the cost of 1TB of high-density RAM adds roughly
$100K USD to the $14K base price of the system (e.g.,
the Dell PowerEdge R910). In comparison, a high-end
320GB SSD sells for $3200 USD, so roughly 4 servers
with 5TB of flash memory cost the same as 1 server with
1 TB of RAM.

2

SSD Usage Write Read/Write Garbage Collects Avoids DRAM Persistent High Programming
Technique Logging < a page Dead pages/data Pollution Data Performance Ease
SSD Swap 4
SSD Swap (Write Logged) 4 4
SSD mmap 4 4
Application Rewrite 4 4 4 4 4 4
SSDAlloc 4 4 4 4 4 4 4

Table 2: While using SSDs via swap/mmap is simple, they achieve only a fraction of the SSD’s performance. Rewriting applica-
tions can achieve greater performance but at a high developer cost. SSDAlloc provides simplicity while providing high performance.

SSD Make reads / sec writes / sec
4KB 0.5KB 4KB 0.5KB

RiDATA (32GB) 3,200 3,700 500 675
Kingston (64GB) 3,300 4,200 1,800 2,000
Intel X25-E (32GB) 26,000 44,000 2,200 2,700
Intel X25-V (40GB) 27,000 46,000 2,400 2,600
Intel X25-M G2 (80GB) 29,000 49,000 2,300 2,500

Table 3: SSDAlloc can take full advantage of object-sized ac-
cesses to the SSD, which can often provide significant perfor-
mance gains over page-sized operations.

3 SSDAlloc’s Design
In this section we describe the design of SSDAlloc. We
first start with describing the networked systems’ re-
quirements from a hybrid DRAM/SSD setting for high-
performance and ease of programming. Our high level
goals for integrating SSDs into these applications are:

• To present a simple interface such that the appli-
cations can be run mostly unmodified – Applica-
tions should use the same programming style and
interfaces as before (via virtual memory managers),
which means that objects, once allocated, always
appear to the application at the same locations in
the virtual memory.

• To utilize the DRAM in the system as efficiently as
possible – Since most of the applications that we
focus on allocate large number of objects and op-
erate over them with little locality of reference, the
system should be no worse at using DRAM than a
custom DRAM based object cache that efficiently
packs as many hot objects in DRAM as possible.

• To maximize the SSD’s utility – Since the SSD’s
read performance and especially the write perfor-
mance suffer with the amount of data transferred,
the system should minimize data transfers and
(most importantly) avoid random writes.

SSDAlloc employs many clever design decisions
and policies to meet our high level goals. In Sec-
tions 3.1 and 3.4, we describe our page-based virtual
memory system using a modified heap manager in com-
bination with a user-space on-demand page materializa-
tion runtime that appears to be a normal virtual memory

system to the application. In reality, the virtual memory
pages are materialized in an on-demand fashion from the
SSD by intercepting page faults. To make this intercep-
tion as precise as possible, our allocator aligns the ap-
plication level objects to always start at page boundaries.
Such a fine grained interception allows our system to act
at an application object granularity and thereby increases
the efficiency of reads, writes and garbage collection on
the SSD. It also helps in the design of a system that can
easily serialize the application’s objects to the persistent
storage for a subsequent usage.

In Section 3.2, we describe how we use the DRAM
efficiently. Since most of the application’s objects are
smaller than a page, it makes no sense to use all of the
DRAM as a page cache. Instead, most of DRAM is filled
with an object cache, which packs multiple useful objects
per page, and one which is not directly accessible to the
application. When the application needs a page, it is dy-
namically materialized, either from the object cache or
from the SSD.

In Sections 3.3 and 3.5 we describe how we manage
the SSD as an efficient log-structured object store. In
order to reduce the amount of data read/written to the
SSD, the system uses the object size information, given
to the memory allocator by the application, to transfer
only the objects, and not whole pages containing them.
Since the objects can be of arbitrary sizes, packing them
together and writing them in a log not only reduces the
write volume, but also increase the SSD’s lifetime.

Table 2 presents an overview of various techniques
by which SSDs are used as program memory today and
provides a comparison to SSDAlloc by enumerating the
high-level goals that each technique satisfies. We now
describe our design in detail starting with our virtual ad-
dress allocation policies.

3.1 SSDAlloc’s Virtual Memory Structure
SSDAlloc ideally wants to non-intrusively observe what
objects the application reads and writes. The virtual
memory (VM) system provides an easy way to detect
what pages have been read or written, but there is no easy
way to detect at a finer granularity. Performing copy-on-
write and comparing the copy with the original can be
used for detecting changes, but no easy mechanism de-

3

Page Buffer

A FIFO cache
of actual pages

in core
occupying only
a small amount

of RAM

Heap Manager

An OPP based pool allocator
for individual allocations

An OPP based coalescing
allocator for OPP arrays

An MP based coalescing
allocator similar to malloc

SSD

A log- structured object store

Address
Translation

Module

A datastructure
that translates
virtual memory
addresses to the
locations on the

SSD

RAM Object Cache

An LRU cache of
objects materialized

from the SSD
occupying all
available RAM

Application

Interacts with the
SSD only via

virtual memory

Virtual
Memory

Allocation

Virtual
Memory
Usage

SSD Manager

SSD Reader

SSD Writer: A copy-and-
compact garbage collector

Pages
Flushed
in LIFO
Order

On-demand
Paging

Fetch
Needed
Objects

Flush
Dirty

Objects

Notify
Objects’

State

Add/Modify Addresses
of New/Moved Objects

Translate Address
for Object Read

Read/
Write

SSD Level

DRAM & Runtime Level

Application Level

Figure 1: SSDAlloc uses most of RAM as an object-level
cache, and materializes/dematerializes pages as needed to sat-
isfy the application’s page usage. This approach improves
RAM utilization, even though many objects will be spread
across a greater range of virtual address space.

termines what parts of a page were read. Instead, SS-
DAlloc uses the observation that virtual address space is
relatively inexpensive compared to actual DRAM, and
reorganizes the behavior of memory allocation to use the
VM system to observe object behavior. Servers typically
expose 48 bit address spaces (256TB) while supporting
less than 1TB of physical RAM, so virtual addresses are
at least 256x more plentiful.

We propose the Object Per Page (OPP) model, using
which, if an application requests memory for an object,
the object is placed on its own page of virtual memory,
yielding a single page for small objects, or more (con-
tiguous) when the object exceeds the page size. The
object is always placed at the start of the page and the
rest of the page is not utilized for memory allocation. In
reality, however, we employ various optimizations (de-
scribed in Section 3.2) to eliminate the physical memory

wastage that can occur because of such a lavish virtual
memory usage. An OPP memory manager can be imple-
mented just by maintaining a pool of pages (details of the
actual memory manager used are given in Section 3.4).
OPP is suitable for individual object allocations, typical
of the applications we focus on. OPP objects are stored
on the SSD in a log-structured manner (details are ex-
plained in Section 3.5). Additionally, using virtual mem-
ory based page-usage information, we can accurately de-
termine which objects are being read and written (since
there is only one object per page). However, it is not
straightforward to use arrays of objects in this manner.
In an OPP array, each object is separated by the page’s
size as opposed to the object’s size. While it is possible
to allocate OPP arrays in such a manner, it would re-
quire some code modifications to be able to use arrays in
which objects separated by page boundaries as opposed
being separated by object boundaries. We describe later
in Section 3.4 how an OPP based coalescing allocator
can be used to allocate OPP based arrays.

3.1.1 Contiguous Array Allocations
In the C programming language, array allocations via
malloc/calloc expect array elements to be contigu-
ous. We present an option called Memory Pages (MP)
which can do this. In MP, when the application asks for a
certain amount of memory, SSDAlloc returns a pointer to
a region of virtual address space with the size requested.
We use a ptmalloc [5] style coalescing memory man-
ager (further explained in Section 3.4) built on top of
bulk allocated virtual memory pages (via brk) to obtain
a system which can allocate C style arrays. Internally,
however, the pages in this space are treated like page
sized OPP objects. For the rest of the paper, we treat
MP pages as page sized OPP objects.

While the design of OPP efficiently leverages the vir-
tual memory system’s page level usage information to
determine application object behavior, it could lead to
DRAM space wastage because the rest of the page be-
yond the object would not be used. To eliminate this
wastage, we organize the physical memory such that only
a small portion of DRAM contains actual materializa-
tions of OPP pages (Page Buffer) while the rest of the
available DRAM is used as a compact hot object cache.

3.2 SSDAlloc’s Physical Memory
Structure

The SSDAlloc runtime system eases application trans-
parency by allowing objects to maintain the same virtual
address over their lifetimes, while their physical loca-
tion may be in a temporarily-materialized physical page
mapped to its virtual memory page in the Page Buffer,
the RAM Object Cache, or the SSD. Not only does the
runtime materialize physical pages as needed, but it also
reclaims them when their usage drops. We first describe

4

how objects are cached compactly in DRAM.
RAM Object Cache – Objects are cached in RAM ob-

ject cache in a compact manner. RAM object cache oc-
cupies available portion of DRAM while only a small
part of DRAM is use for pages that are currently in
use (shown in Figure 1). This decision provides several
benefits – 1) Objects cached in RAM can be accessed
much faster than the SSD, 2) By performing usage-based
caching of objects instead of pages, the relatively small
RAM can cache more useful objects when using OPP,
and 3) Given the density trends of SSD and RAM, object
caching is likely to continue being a useful optimization
going forward.

RAM object cache is maintained in LRU fashion. It in-
dexes objects using their virtual memory page address as
the key. An OPP object in RAM object cache is indexed
by its OPP page address, while an MP page (a 4KB OPP
object) is indexed with its MP page address. In our im-
plementation, we used a hashtable with the page address
as the key for this purpose. Clean objects being evicted
from the RAM object cache are deallocated while dirty
objects being evicted are enqueued to the SSD writer
mechanism (shown in Figure 1).

Page Buffer – Temporarily materialized pages (in
physical memory) are are collectively known as the Page
Buffer. These pages are materialized in an on-demand
fashion (described below). Page Buffer size is appli-
cation configurable, but in most of the applications we
tested, we found that a Page Buffer of size less than
25MB was sufficient to bring down the rate of page ma-
terializations per second to the throughput of the applica-
tion. However, regardless of the size of the Page Buffer,
physical memory wastage from using OPP has to be min-
imized. To minimize this wastage we make the rest of the
active OPP physical page (portion beyond the object) a
part of the RAM object cache. RAM object cache is im-
plemented such that the shards of pages that materialize
into physical memory are used for caching objects.

SSDAlloc’s Paging – For a simple user space imple-
mentation we implement the Page Buffer via memory
protection. All virtual memory allocated using SSDAl-
loc is protected (via mprotect). A page usage is de-
tected when the protection mechanism triggers a fault.
The required page is then unprotected (only read or write
access is given depending on the type of fault to be able
to detect writes separately) and its data is then populated
in the seg-fault handler – an OPP page is populated by
fetching the object from RAM object cache or the SSD
and placing it at the front of the page. An MP page is
populated with a copy of the page (a page sized object)
from RAM object cache or the SSD.

Pages dematerialized from Page Buffer are converted
to objects. Those objects are pushed into the RAM object
cache, the page is then madvised to be not needed and

finally, the page is reprotected (via mprotect) – in case
of OPP/MP the object/page is marked as dirty if the page
faults on a write.

Page Buffer can be managed in many ways, with the
simplest way being FIFO. Page Buffer pages are unpro-
tected, so our user space implementation based runtime
would have no information about how a page would be
used while it remains in the Page Buffer, making LRU
difficult to implement. For simplicity, we used FIFO in
our current implementation. The only penalty is that if a
dematerialized page is needed again then the page has to
be rematerialized from RAM.

OPP can have more virtual memory usage than
malloc for the same amount of data allocated. While
MP will round each virtual address allocation to the next
highest page size, the OPP model allocates one object
per page. For 48-bit address spaces, the total number of
pages is 236 (≈ 64 Billion objects via OPP). For 32-bit
systems, the corresponding number is 220 (≈ 1 million
objects). Programs that need to allocate more objects on
32-bit systems can use MP instead of OPP. Furthermore,
SSDAlloc can coexist with standard malloc, so address
space usage can be tuned by moving only necessary al-
locations to OPP.

While the separation between virtual memory and
physical memory presents many avenues for DRAM op-
timization, it does not directly optimize SSD usage. We
next present our SSD organization.

3.3 SSDAlloc’s SSD Maintenance
To overcome the limitations on random write behav-
ior with SSDs, SSDAlloc writes the dirty objects when
flushing the RAM object cache to the SSD in a log-
structured [22] manner. This means that the objects have
no fixed storage location on the SSD – similar to flash-
based filesystems [11]. We first describe how we man-
age the mapping between fixed virtual address spaces to
ever-changing log-structured SSD locations. Our SSD
writer/garbage-collector is described later.

To locate objects on the SSD, SSDAlloc uses a data
structure called the Object Table. While the virtual
memory addresses of the objects are their fixed locations,
Object Tables store their ever-changing SSD locations.
Object Tables are similar to page tables in traditional vir-
tual memory systems. Each Object Table has a unique
identifier called the OTID and it contains an array of in-
tegers representing the SSD locations of the objects it
indexes. An object’s Object Table Offset (OTO) is the
offset in this array where its SSD location is stored. The
2-tuple <OTID, OTO> is the object’s internal persistent
pointer.

To efficiently fetch the objects from the SSD when
they are not cached in RAM, we keep a mapping between
each virtual address range (as allocated by the OPP or the

5

MP memory manager) in use by the application and its
corresponding Object Table, called an Address Transla-
tion Module (ATM). When the object of a page that is
requested for materialization is not present in the RAM
object cache, <OTID,OTO> of that object is determined
from the page’s address via an ATM lookup (shown in
Figure 1). Once the <OTID,OTO> is known, the ob-
ject is fetched from the SSD, inserted into RAM object
cache and the page is then materialized. The ATM is
only used when the RAM object cache does not have the
required objects. A successful lookup results in a mate-
rialized physical page that can be used without runtime
system intervention for as long as the page resides in the
Page Buffer. If the page that is requested does not be-
long to any allocated range, then the segmentation fault
is a program error. In that case the control is returned to
the originally installed seg-fault handler.

The ATM indexes and stores the 2-tuples <Virtual
Memory Range, OTID> such that when it is queried
with a virtual memory page address, it responds with the
<OTID,OTO> of the object belonging to the page. In
our implementation, we chose a balanced binary search
tree for various reasons – 1) virtual memory range can
be used as a key while the OTID can be used as a value.
The search tree can be queried using an arbitrary page
address and by using a binary search, one can determine
the virtual memory range it belongs to. Using the queried
page’s offset into this range, the relevant object’s OTO is
determined, 2) it allows the virtual memory ranges to be
of any size and 3) it provides a simple mechanism by
which we can improve the lookup performance – by re-
ducing the number of Object Tables, there by reducing
the number of entries in the binary search tree. Our heap
manager which allocates virtual memory (in OPP or MP
style) always tries to keep the number of virtual memory
ranges in use to a minimum to reduce the number of Ob-
ject Tables in use. Before we describe our heap manager
design, we present a few simple optimizations to reduce
the size of Object Tables.

We try to store the Object Tables fully in DRAM to
minimize multiple SSD accesses to read an object. We
perform two important optimizations to reduce the size
overhead from the Object Tables. First – to be able to
index large SSDs for arbitrarily sized objects, one would
need a 64 bit offset that would increase the DRAM over-
head for storing Object Tables. Instead, we store a 32
bit offset to an aligned 512 byte SSD sector that contains
the start of the object. While objects may cross the 512
byte sector boundaries, the first two bytes in each sector
are used to store the offset to the start of the first object
starting in that sector. Each object’s on-SSD metadata
contains its size, using which, we can then find the rest of
the object boundaries in that sector. We can index 2TB of
SSD this way. 40 bit offsets can be used for larger SSDs.

Our second optimization addresses Object Table over-
head from small objects. For example, four byte objects
can create 100% DRAM overhead from their Object Ta-
ble offsets. To reduce this overhead, we introduce object
batching – small objects are batched into larger contigu-
ous objects. We batch enough objects together such that
the size of the larger object is at least 128 bytes (restrict-
ing the Object Table overhead to a small fraction – 1

32).
Pages, however, are materialized in regular OPP style –
one small object per page. However, batched objects are
internally maintained as a single object.

3.4 SSDAlloc’s Heap Manager
Internally, SSDAlloc’s virtual memory allocation mech-
anism works like a memory manager over large Object
Table allocations (shown in Figure 1). This ensures that
a new Object Table is not created for every memory
allocation. The Object Tables and their corresponding
virtual memory ranges are created in bulk and memory
managers allocate from these regions to increase ATM
lookup efficiency. We provide two kinds of memory
managers – An object pool allocator which is used for
individual allocations and a ptmalloc style coalescing
memory manager. We keep the pool allocator separate
from the coalescing allocator for the following reasons:
1) Many of our focus applications prefer pool allocators,
so providing a pool allocator further eases their devel-
opment, 2) Pool allocators reduce the number of page
reads/writes by not requiring coalescing, and 3) Pool al-
locators can export simpler memory usage information,
increasing garbage collector efficiency.

Object Pool Allocator: SSDAlloc provides an object
pool allocator for allocating objects individually via OPP.
Unlike traditional pool allocators, we do not create pools
for each object type, but instead create pools of differ-
ent size ranges. For example, all objects of size less than
0.5KB are allocated from one pool, while objects with
sizes between 0.5KB and 1KB are allocated from another
pool. Such pools exist for every 0.5KB size range, since
OPP performs virtual memory operations at page gran-
ularity. Despite the pools using size ranges, we avoid
wasting space by obtaining the actual object size from
the application at allocation time, and using this size both
when the object is stored in the RAM object cache, and
when the object is written to the SSD. When reading an
object from the SSD, the read is rounded to the pool size
to avoid multiple small reads.

SSDAlloc maintains each pool as a free list – a pool
starts with a single allocation of 128 objects (one Object
Table, with pages contiguous in virtual address space)
initially and doubles in size when it runs out of space
(with a single Object Table and a contiguous virtual
memory range). No space in the RAM object cache or
the SSD is actually used when the size of pool is in-

6

creased, since only virtual address space is allocated.
The pool stops doubling in size when it reaches a size
of 10,000 (configurable) and starts linearly increasing in
steps of 10,000 from then on. The free-list state of an ob-
ject can be used to determine if an object on the SSD is
garbage, enabling object-granularity garbage collection.
This type of a separation of the heap-manager state from
where the data is actually stored is similar to the “frame-
heap” implementation of Xerox Parc’s Mesa and Cedar
languages [15].

Like Object Tables, we try to maintain free-lists in
DRAM, so the free list size is tied to the number of free
objects, instead of the total number of objects. To re-
duce the size of the free list we do the following: the
free list actively indexes the state of only one Object Ta-
ble of each pool at any point of time, while the alloca-
tion state for the rest of the Object Tables in each pool
is managed using a compact bitmap notation along with
a count of free objects in each Object Table. When the
heap manager cannot allocate from the current one, it
simply changes the current Object Table’s free list repre-
sentation to a bitmap and moves on to the Object Table
with the largest number of free objects, or it increases the
size of the pool.

Coalescing Allocator: SSDAlloc’s coalescing mem-
ory manager works by using memory managers like pt-
malloc [5] over large address spaces that have been re-
served. In our implementation we use a simple best-
first with coalescing memory manager [5] over large
pre-allocated address spaces, in steps of 10,000 (config-
urable) pages; no DRAM or SSD space is used for these
pre-allocations, since only virtual address space is re-
served. Each object/page allocated as part of the coalesc-
ing memory manager is given extra metadata space in the
header of a page to hold the memory manager informa-
tion (objects are then appropriately offset). OPP arrays of
any size can be allocated by performing coalescing at the
page granularity, since OPP arrays are simply arrays of
pages. MP pages are treated like pages in the traditional
virtual memory system. The memory manager works ex-
actly like traditional malloc, coalescing freely at byte
granularity. Thus, MP with our Coalescing Allocator can
be used as a drop-in replacement for log-structured swap.

A dirty object evicted by RAM object cache needs to
be written to the SSD’s log and the new location has to be
entered at its OTO. This means that the older location of
the object has to be garbage collected. An OPP object on
the SSD which is in a free-list also needs to be garbage-
collected. Since SSDs do not have the mechanical delays
associated with a moving disk head, we can use a sim-
pler garbage collector than the seek-optimized ones de-
veloped for disk-based log-structured file systems [22].
Our cleaner performs a “read-modify-write” operation
over the SSD sequentially – it reads any live objects at

the head of the log, packs them together, and writes them
along with flushed dirty objects from RAM.

3.5 SSDAlloc’s Garbage Collector
The SSDAlloc Garbage Collector (GC) activates when-
ever the RAM object cache has evicted enough number
of dirty objects (as shown in Figure 1) to amortize the
cost of writing to the SSD. We use a simple read-modify-
write garbage collector, which reads enough partially-
filled blocks (of configurable size, preferably large) at
the head of the log to make space for the new writes.
Each object on the SSD has its 2-tuple <OTID,OTO>
and its size as the metadata, used to update the Object
Table. This back pointer is also used to figure out if the
object is garbage, by matching the location in the Object
Table with the actual offset. To minimize the number of
reads per iteration of the GC on the SSD, we maintain in
RAM the amount of free space per 128KB block. These
numbers can be updated whenever an object in an erase
block is moved elsewhere (live object migration for com-
paction), when a new object is written to it (for writing
out dirty objects) or when the object is moved to a free-
list (object is “free”).

While the design so far focused on obtaining high
performance from DRAM and flash in a hybrid setting,
memory allocated via SSDAlloc is not non-volatile. We
now present our durability framework to preserve appli-
cation memory and state on the SSD.

3.6 SSDAlloc’s Durability Framework
SSDAlloc helps applications make their data persistent
across reboots. Since SSDAlloc is designed to use much
more SSD-backed memory than the RAM in the system,
the runtime is expected to maintain the data persistent
across reboots to avoid the loss of work.

SSDAlloc’s checkpointing is a way to cleanly shut-
down an SSDAlloc based application while making ob-
jects and metadata persistent to be used across reboots.
Objects can be made persistent by simply flushing all the
dirty objects from RAM object cache to the SSD. The
state of the heap-manager, however, needs more support
to be made persistent. The bitmap style free list represen-
tation of the OPP pool allocator makes the heap-manager
representation of individually allocated OPP objects easy
to be serialized to the SSD. However, the heap-manager
information as stored by a coalescing memory manager
used by the OPP based array allocator and the MP based
memory allocator would need a full scan of the data on
the SSD to be regenerated after a reboot. Our current
implementation provides durability only for the individ-
ually allocated OPP objects and we wish to provide dura-
bility for other types of SSDAlloc data in the future.

We provide durability for the heap-manager state of
the individually allocated OPP objects by reserving a
known portion of the SSD for storing the correspond-

7

ing Object Tables and the free list state (a bitmap). Since
the maximum Object Table space to object size overhead
ratio is 1

32 , we reserve slightly more than 1
32 of the to-

tal SSD space (by using a file that occupies that much
space) where the Object Tables and the free list state can
be serialized for later use.

It should be possible to garbage collect dead objects
across reboots. This is handled by making sure that our
copy-and-compact garbage collector is always aware of
all the OTIDs that are currently active within the SS-
DAlloc system. Any object with an unknown OTID
is garbage collected. Additionally, any object with an
OTID that is active is garbage collected only according
to the criteria discussed in Section 3.5.

Virtual memory address ranges of each Object Ta-
ble must be maintained across reboots, because check-
pointed data might contain pointers to other check-
pointed data. We store the virtual memory address range
of each Object Table in the first object that this Object
Table indexes. This object is written once at the time of
creation of the Object Table and is not made available to
the heap manager for allocation.

3.7 SSDAlloc’s Overhead
We observe that the overhead introduced by the SSDAl-
loc’s runtime mechanism is minor compared to the per-
formance limits of today’s high-end SSDs. On a test ma-
chine with a 2.4 GHz quad-core processor, we bench-
mark the SSDAlloc’s runtime mechanism to arrive at
that conclusion. To benchmark the latency overhead of
the signal handling mechanism, we protect 200 Million
pages and then measure the maximum seg-fault gener-
ation rate that can be attained. For measuring the the
ATM lookup latency, we build an ATM with a million
entries and then measure the maximum lookup through-
put that can be obtained. To benchmark the latency of
an on-demand page materialization of an object from the
RAM object cache to a page within the Page Buffer, we
populate a page with random data and measure the la-
tency. To benchmark the page dematerialization of a
page from the Page Buffer to an object in the RAM ob-
ject cache, we copy the contents of the page elsewhere,
madvise the page as not needed and reprotect the page
using mprotect and measure the total latency. To
benchmark the latency of TLB misses (through L3) we
use a CPU benchmarking tool, the Calibrator [2], by al-
locating 15GB of memory per core. Table 4 presents the
results. Latencies of all the overheads clearly indicate
that they would not be a bottleneck even for the high-end
SSDs like the FusionIO IOXtreme drives, which can pro-
vide up to 250,000 IOPS. In fact, one would need 5 such
SSDs for the SSDAlloc runtime to saturate the CPU.

The largest CPU overhead is from the signal han-
dling mechanism, which is present only because of a

Overhead Source Avg. Latency (µsec)
TLB Miss (DRAM read) 0.014
ATM Lookups 0.046
Page Materialization 0.138
Page Dematerialization 0.172
Signal Handling 0.666
Combined Overhead 0.833

Table 4: SSDAlloc’s overheads are quite low, and place an up-
per limit of over 1 million operations per second using low-end
server hardware. This request rate is much higher than even the
higher-performance SSDs available today, and is higher than
even what most server applications need from RAM.

user space implementation. With an in kernel implemen-
tation, the VM pager can be used to manage the Page
Buffer, which would further reduce the CPU usage. We
designed OPP for applications with high read random-
ness without much locality, because of which, using OPP
will not greatly increase the number of TLB (through L3)
misses. Hence, applications that are not bottlenecked by
DRAM (but by CPU, network, storage capacity, power
consumption or magnetic disk) can replace DRAM with
high-end SSDs via SSDAlloc and reduce hardware ex-
penditure and power costs. For example, Facebook’s
memcache servers are bottlenecked by network parame-
ters [3]; their peak performance of 200,000 tps per server
can be easily obtained by using today’s high-end SSDs as
RAM extension via SSDAlloc.

DRAM overhead created from the Object Tables is
compensated by the performance gains. For example, a
300GB SSD would need 10GB and 300MB of space for
Object Tables when using OPP and MP respectively for
creating 128 byte objects. However, SSDAlloc’s random
read/write performance when using OPP is 3.5 times bet-
ter than when using MP (shown in Section 5). Addition-
ally, for the same random write workload OPP generates
32 times less write traffic to the SSD when compared to
MP and thereby increases the lifetime of the SSD. Ad-
ditionally, with an in kernel implementation, either the
page tables or the Object Tables will be used as they both
serve the same purpose, further reducing the overhead of
having the Object Tables in DRAM.

4 Implementation and the API
We have implemented our SSDAlloc prototype as a C++
library in roughly 10,000 lines of code. It currently sup-
ports SSD as the only form of flash memory, though it
could later be expanded, if necessary, to support other
forms of flash memory. In our current implementation,
applications can coexist by creating multiple files on
the SSD. Alternatively, an application can use the entire
SSD, as a raw disk device for high performance. While
the current implementation uses flash memory via an I/O
controller such an overhead may be avoided in the fu-

8

5K

10K

15K

20K

25K

30K

35K

 0 1 2 3 4 5 6 7 8 9 10

R
a

n
d

o
m

 R
e

a
d

s
 (

re
q

/s
e

c
)

Number of Threads

RiData

Kingston

Intel X25-V

Intel X25-E

Intel X25-M (G2)

Figure 2: SSDAlloc’s thread-safe memory allocators allow ap-
plications to exploit the full parallelism of many SSDs, which
can yield significant performance advantages. Shown here is
the performance for 4KB reads.

ture [13]. We present an overview of the implementation
via a description of the API.
ssd oalloc: void* ssd oalloc(int numObjects, int object-
Size): is used for OPP allocations – both individual and
array allocations. If numObjects is 1 then the object is al-
located from the in-built OPP pool allocator. If it is more
than 1, it is allocated from the OPP coalescing memory
manager.
ssd malloc: void* ssd malloc(size t size): allocates
size bytes of memory using the heap manager (described
in Section 3.4) on MP pages. Similar calls exist for
ssd calloc and ssd realloc.
ssd free: void ssd free(void* va address): deallo-
cates the objects whose virtual allocation address is
va address. If the allocation was via the pool allocator
then the <OTID,OTO> of the object is added to the ap-
propriate free list. In case of array allocations, the in-
built memory manager frees the data according to our
heap manager. SSDAlloc is designed to work with low
level programming languages like ‘C’. Hence, the onus
of avoiding memory leaks and of freeing the data appro-
priately is on the application.
checkpoint: int checkpoint(char* filename): flushes all
dirty objects to the SSD and writes all the Object Tables
and free-lists of the application to the file filename. This
call is used to make the objects of an application durable.
restore: int restore(char* filename) : It restores the SS-
DAlloc state for the calling application. It reads the file
(filename) containing the Object Tables and the free list
state needed by the application and mmaps the necessary
address for each Object Table (using the first object en-
try) and then inserts the mappings into the ATM as de-
scribed in Section 3.6.

SSDs scale performance with parallelism. Figure 2
shows how some high-end SSDs have internal paral-
lelism (for 0.5KB reads, other read sizes also have paral-
lelism). Additionally, multiple SSDs could be used with
in an application. All SSDAlloc functions, including the
heap manager, are implemented in a thread safe manner

to be able to exploit the parallelism.

4.1 Migration to SSDAlloc
We believe that SSDAlloc is suited to the memory-
intensive portions of server applications with minimal to
no locality of reference, and that migration should not be
difficult in most cases – our experience suggests that only
a small number of data types are responsible for most of
the memory usage in these applications. The following
scenarios of migration are possible for such applications
to embrace SSDAlloc:

• Replace all calls to malloc with ssd malloc:
Application would then use the SSD as a log-
structured page store and use the DRAM as a page
cache. Application’s performance would be bet-
ter than when using the SSD via unmodified Linux
swap because it would avoid random writes and cir-
cumvent other legacy swap system overheads that
are more clearly quantified in FlashVM [23].

• Replace all malloc calls made to allocate mem-
ory intensive datastructures of the application with
ssd malloc: Application can then avoid SS-
DAlloc’s runtime intervention (copying data be-
tween Page Buffer and RAM object cache) for non-
memory intensive datastructures and can thereby
slightly reduce its CPU utilization.

• Replace all malloc calls made to allocate mem-
ory intensive datastructures of the application with
ssd oalloc: Application would then use the
SSD as a log-structured object store only for mem-
ory intensive objects. Application’s performance
would be better than when using the SSD as a log-
structured swap because now the DRAM and the
SSD would be managed at an object granularity.

In our evaluation of SSDAlloc, we tested all the above
migration scenarios to estimate the methodology that
provides the maximum benefit for applications in a hy-
brid DRAM/SSD setting.

5 Evaluation Results
In this section we evaluate SSDAlloc using microbench-
marks and applications built or modified to use SSDAl-
loc. We first present microbenchmarks to test the limits
of benefits from using SSDAlloc versus SSD-swap. We
also examine the performance of memcached (with SS-
DAlloc and SSD-swap), a popular key-value store used
in datacenters, where SSDs have been shown to mini-
mize energy consumption [7]. Later, we benchmark a
B+Tree index for SSDs, where we replace all calls to
malloc with ssd malloc to see the benefits and im-
pact of an automated migration to SSDAlloc.

After that, we compare the performance of systems
designed to use SSDAlloc to the same system specifi-
cally customized to use the SSD directly, to evaluate the

9

10K

20K

30K

40K

50K

60K

OPP MP SSD-swap

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(r
e
q

/s
e

c
)

Allocation Method

All Reads
75% Reads
50% Reads

25% Reads
All Writes

(a) Throughput Vs. Allocation Style (X25-E)

0

10K

20K

30K

40K

OPP MP SSD-swap

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(r
e
q

/s
e

c)

Allocation Method

RiData

Kingston

Intel X25-E

Intel X25-V

Intel X25-M

(b) Throughput Vs. Allocation Style (50% Reads)

1

100

1K

OPP MP SSD-swap

O
b

je
c
ts

 W
ri
tt

e
n

 p
e
r

R
a
n

d
o
m

 W
ri
te

Allocation Method

(c) Write Efficiency Vs. Allocation Style

Figure 3: Microbenchmark results on 32GB object (128 byte each) array. In (a), OPP works best (1.8–3.5 times over MP and
2.2–14.5 times over swap), MP and swap take a huge performance hit when write traffic increases. In (b), OPP, on all SSDs, trumps
all other methods by reducing read and write traffic. In (c), OPP has the maximum write efficiency (31.5 times over MP and 1013
times over swap) by writing only dirty objects as opposed to writing full pages containing them.

overhead from SSDAlloc’s runtime. We examine a net-
work packet cache backend that was built using transpar-
ent SSDAlloc techniques described in this paper and also
the non-transparent mechanism described in our work-
shop paper [8]. We also evaluate the performance of a
web proxy/WAN accelerator cache index for SSDs intro-
duced in prior work [9, 8] and similar to the problems
addressed more recently [6, 14]. Here, we demonstrate
how using OPP makes efficient use of DRAM while pro-
viding high performance.

In all these experiments we evaluate applications
using three different allocation methods: SSD-swap
(via malloc), MP or log-structured SSD-swap (via
ssd malloc), OPP (via ssd oalloc). Our evalua-
tions use five kinds of SSDs and two types of servers.
The SSDs and some of their performance characteristics
are shown in Table 3. The two servers we use have a sin-
gle core 2GHz CPU with 4GB of RAM and a quad-core
2.4GHz CPU with 16GB of RAM respectively.

5.1 Microbenchmarks
We examine the performance of random reads and writes
in an SSD-augmented memory by accessing a large ar-
ray of 128 byte objects – an array of total size of 32GB
using various SSDs. We further restrict the accessible
RAM in the system to 1.5GB to test out-of-DRAM per-
formance. We access objects randomly (read or write) 2
million times per test. The array is allocated using four
different methods – SSD-swap (via malloc), MP (via
ssd malloc), OPP (via ssd oalloc). Object Tables
for each of OPP, and MP occupy 1.1GB and 34MB re-
spectively. Page Buffers are restricted to a size of 25 MB
(it was sufficient to pin a page down while it was being
accessed in an iteration). Remaining memory was used
by the RAM object cache. To exploit the SSD’s paral-
lelism, we run 8–10 threads that perform the random ac-
cesses in parallel.

The results of this microbenchmark are shown in Fig-
ure 3. Figure 3(a) shows how (for the Intel X25-E SSD)

OPP MP SSD-swap
Average (µsec) 257 468 624
Std Dev (µsec) 66 98 287

Table 5: Response times show that OPP performs best, since
it can make the best use of the block-level performance of the
SSD whereas MP provides page-level performance. SSD-swap
performs poorly due to worse write behavior.

allocating objects via OPP achieves much higher per-
formance. OPP beats MP by a factor of 1.8–3.5 times
depending on the write percentage and it beats SSD-
swap by a factor of 2.2–14.5 times. As the write traffic
increases, MP and SSD-swap fare poorly due to read-
ing/writing at a page granularity. OPP reads only 512
byte sector per object access as opposed to reading a 4KB
page; it dirties only 128 bytes as opposed to dirtying 4KB
per random write.

Figure 3(b) demonstrates how OPP performs better
than all the allocation methods across all the SSDs when
50% of the operations are writes. OPP beats MP by a
factor of 1.4–3.5 times and it beats SSD-swap by a factor
of 5.5–17.4 times. Table 5 presents response time statis-
tics when using the Intel X25-E SSD. OPP has the lowest
averages and standard deviations. SSD-swap has a high
average response time compared to OPP and MP. This is
mainly because of storage sub-system inefficiencies and
random writes (quantified more clearly in [23]).

Figure 3(c) quantifies the write optimization obtained
by using OPP in log scale. OPP writes at an object gran-
ularity, which means that it can fit more number of dirty
objects in a given write buffer when compared to MP.
When a 128KB write buffer is used, OPP can fit nearly
1024 dirty objects in the write buffer while MP can fit
only around 32 pages containing dirty objects. Hence,
OPP writes more number of dirty objects to the SSD
per random write when compared to both MP and SSD-
swap (which makes a random write for every dirty ob-
ject). OPP writes 1013 times more efficiently compared
to SSD-swap and 31.5 times compared to MP (factors

10

0

5K

10K

15K

20K

25K

30K

 1 2 3 4 5 6 7 8 9 10

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(r
e
q

/s
e

c
)

Number of memcached Instances

one swap space
two swap spaces

three swap spaces
SSDAlloc OPP

SSDAlloc MP

(a) Throughput Vs. Num Instances (50% get)

0

10K

20K

30K

40K

50K

 128 256 512 1024 2048 4096 8192

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(r
e
q

/s
e

c
)

Maximum Object Size (bytes)

SSDAlloc OPP

two swap spaces

SSDAlloc MP

(b) Throughput Vs. Object Size (50% get)

5K

10K

15K

20K

25K

OPP MP SSD-swap

T
h
ro

u
g

h
p

u
t
(r

e
q
s
 /

 s
e

c
)

Allocation Method

RiData

Kingston

Intel X25-E

Intel X25-V

Intel X25-M

(c) Gain over SSD-Swap (50% get)

Figure 4: Memcached results. In (a), OPP outperforms MP and SSD-swap by factors of 1.6 and 5.1 respectively (mix of 4byte to
4KB objects). In (b), SSDAlloc’s use of objects internally can yield dramatic benefits, especially for smaller memcached objects.
In (c), SSDAlloc beats SSD-Swap by a factor of 4.1 to 6.4 for memcached tests (mix of 4byte to 4KB objects).

independent of SSD make). Additionally, OPP not only
increases write efficiency but also writes 31.5 times less
data compared to MP and SSD-swap for the same work-
load by working at an object granularity and thereby in-
creases the SSD lifetime by the same factor.

Overall, OPP trumps SSD-swap by huge gain factors.
It also outperforms MP by large factors providing a good
insight into the benefits that OPP would provide over log-
structured swaps. Such benefits scale inversely with the
size of the object. For example with 1KB objects OPP
beats MP by a factor of 1.6–2.8 and with 2KB objects
the factor is 1.4–2.3.

5.2 Memcached Benchmarks
To demonstrate the simplicity of SSDAlloc and its per-
formance benefits for existing applications, we modify
memcached. Memcached uses a custom slab allocator to
allocate values and regular mallocs for keys. We re-
placed memcache’s slabs with OPP (ssd oalloc) and
with MP(ssd malloc) to obtain two different versions.
These changes require modifying 21 lines of code out of
over 11,000 lines in the program. When using MP, we re-
placed malloc with ssd malloc inside memcache’s
slab allocator (used only for allocating values).

We compare these versions with an unmodified mem-
cached using SSD-swap. For SSDs with parallelism we
create multiple swap partitions on the same SSD. We also
run multiple instances of memcached to exploit CPU and
SSD parallelism. Figure 4 shows the results.

Figure 4(a) shows the aggregate throughput obtained
using a 32GB Intel X25-E SSD (2.5GB RAM), while
varying the number of memcached instances used. We
compare five different configurations – memcached with
OPP and MP, memcached with one, two and three swap
partitions on the same SSD. For this experiment we pop-
ulate memcached instances with object sizes distributed
uniformly randomly from 4 bytes to 4KB such that the
total size of objects inserted is 30GB. For benchmarking,
we generate 1 million memcached get and set requests
(100% hitrate) each using four client machines that stati-

cally partition the keys and distribute their requests to all
running memcached instances.

Results indicate that SSDAlloc’s write aggregation is
able to exploit the device’s parallelism, while SSD-swap
based memcached is restricted in performance, mainly
due to the swap’s random write behavior. OPP (at 8 in-
stances of memcached) beats MP (at 6 instances of mem-
cached) and SSD-swap (at 6 instances of memcached on
two swap partitions) by factors of 1.6 and 5.1 respec-
tively by working at an object granularity, for a mix of
object sizes from 4bytes to 4KB. While using SSD-Swap
with two partitions lowers the standard deviation of the
response time, SSD-Swap had much higher variance in
general. For SSD-Swap, the average response time was
667 microseconds and the standard deviation was 398
microseconds, as opposed to OPP’s response times of
287 microseconds with a 112 microsecond standard de-
viation (high variance due to synchronous GC).

Figure 4(b) shows how object size determines mem-
cached performance with and without OPP (Intel X25-E
SSD). Here, we generate requests over the entire work-
load without much locality. We compare the aggregate
throughput obtained while varying the maximum ob-
ject size (actual sizes are distributed uniformly from 128
bytes to limit). We perform this experiment for three set-
tings – 1) Eight memcached instances with OPP, 2) Six
memcached instances with MP and 3) Six memcached
instances with two swap partitions. We picked the num-
ber of instances from the best performing numbers ob-
tained from the previous experiment. We notice that
as the object size decreases, memcached with OPP per-
forms much better than when compared to memcached
with SSD-swap and MP. This is due to the fact that using
OPP moves objects to/from the SSD, instead of pages,
resulting in smaller reads and writes. The slight drop in
performance in case of MP and SSD-swap when moving
from 4KB object size limit to 8KB is because the runtime
sometimes issues two reads for objects larger than 4KB.
When the Object Table indicates that they are contigu-
ous on SSD, we can fetch them together. In comparison,

11

 200

 250

 300

 350

 400

 450

100 300 600 900 1200 1500 Mixed

R
e
s
p
o

n
s
e
 T

im
e
 (

m
ic

ro
s
e

c
o

n
d

s
)

Packet Size (bytes)

Transparent SSDAlloc OPP

Non Transaparent SSDAlloc OPP

(a) Response Time Vs. Packet Size

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

4 8 16 32 64

R
e
s
p
o

n
s
e
 T

im
e
 (

m
ic

ro
s
e

c
o

n
d

s
)

Key Size (bytes)

SSD-swap OPP MP

(b) Response Time Vs. Key Size

Figure 5: Packet Cache Benchmarks: In (a) we see that SSDAlloc’s runtime mechanism adds only up to 20 microseconds of
latency overhead, while there was no significant difference in throughput. B+Tree Benchmarks: In (b), we see that SSDAlloc’s
ability to internally use objects beats page-sized operations of MP or SSD-swap.

SSD-swap prefetches when possible.
Figure 4(c) quantifies these gains for various SSDs

(objects between 4byte and 4KB) at a high insert rate
of 50%. The benefits of OPP can be anywhere between
4.1–6.4 times higher than SSD-swap and 1.2–1.5 times
higher than MP (log-structured swap). For smaller ob-
jects (each 0.5KB) the gains are 1.3–3.2 and 4.9–16.4
times respectively over MP and SSD-swap (16.4 factor
improvement is achieved on the Intel X25-V SSD). Also,
depending on object size distribution, OPP writes any-
where between 3.88–31.6 times more efficiently when
compared to MP and 24.71–1007 times compared to
SSD-swap (objects written per SSD write). The total
write traffic of OPP is also between 3.88–31.6 times less
when compared to MP and SSD-swap, increasing the
lifetime and reliability of the SSD.

5.3 Packet Cache Benchmarks
Packet caches (and chunk caches) built using SSDs scale
the performance of network accelerators [6] and inline
data deduplicators [14] by exploiting good random read
performance and large capacity of flash. Similar capacity
DRAM-only systems will cost much more and also con-
sume more power. We built a packet cache backend that
indexes a packet with the SHA1 hash of its contents (us-
ing a hash table). We built it via two methods – 1) pack-
ets are allocated via OPP (ssd oalloc), and 2) packets
are allocated via the non-transparent object get/put based
SSDAlloc that we describe in our workshop paper [8] –
where the SSD is used directly without any runtime inter-
vention. Remaining data structures in both the systems
are allocated via malloc. We compare these two im-
plementations to estimate the overhead from SSDAlloc’s
runtime mechanism for each packet accessed.

For the comparison, we test the response times of
packet get/put operations into the backend. We consider
many settings – we vary the size of the packet from 100
to 1500 bytes and in another setting we consider a mix
of packet sizes (uniformly, from 100 to 1500 bytes). We
use a 20 byte SHA1 hash of the packet as the key that is

stored in the hashtable (in DRAM) against the packet as
the value (on SSD) – the cache is managed in LRU fash-
ion. We generate random packet content from “/dev/ran-
dom”. We use the Intel X25-M SSD and the high-end
CPU machine for these experiments, with eight threads
for exploiting device parallelism. We first fill the SSD
with 32GB worth of packets and then perform 2 million
lookups and inserts (after evicting older packets in LRU
fashion). In this benchmark, we configured the Page
Buffer to hold only a handful of packets such that ev-
ery page get/put request leads to a signal raise, and an
ATM lookup followed by an OPP page materialization.

Figure 5(a) compares the response times of OPP
method using the transparent techniques described in
this paper and the non-transparent calls described in the
workshop paper [8]. The results indicate that the over-
head from SSDAlloc’s runtime mechanism is only on
the order of ten microseconds, there is no significant dif-
ference in throughput. Highest overhead observed was
for 100 byte packets, where transparent SSDAlloc con-
sumed 6.5% more CPU than the custom SSD usage ap-
proach when running at 38K 100 byte packets per sec-
ond (30.4 Mbps). We believe this overhead is acceptable
given the ease of development. We also built the packet
cache by allocating packets via MP (ssd malloc) and
SSD-swap (malloc). We find that OPP based packet
cache performed 1.3–2.3 times better than an MP based
one and 4.8–10.1 times better than SSD-swap for mixed
packets (from 100 to 1500 bytes) across all SSDs. Write
efficiency of OPP scaled according to the packet size as
opposed to MP and SSD-swap which always write a full
page (either for writing a new packet or for editing the
heap manager data by calling ssd free or free). Us-
ing an OPP packet cache, three Intel SSDs can acceler-
ate a 1Gbps link (1500 byte packets at 100% hit rate).
Whereas, MP and SSD-swap would need 5 and 12 SSDs
respectively.

12

100K

1M

10M

100M

1.5 2.0 2.5 3.0 3.5 4.0

M
a

x
 A

llo
w

e
d

 W
o

rk
in

g
 S

e
t

S
iz

e

Available DRAM (GB)

SSDAlloc OPP
SSDAlloc MP

SSD-swap

Figure 6: HashCache benchmarks: SSDAlloc OPP option can
beat MP and SSD-Swap on RAM requirements due to caching
objects instead of pages. The maximum size of a completely
random working set of index entries each allocation method
can cache in DRAM is shown (in log scale).

5.4 B+Tree Benchmarks

We built a B+Tree data structure via Boost framework [1]
using the in-built Boost object pool allocator (which uses
malloc internally). We then ported it to SSDAlloc OPP
(in 15 lines of code) by replacing calls to object pool
with ssd oalloc. We also ported it to MP by replac-
ing all calls to malloc (inside object pool) with
ssd malloc (in 6 lines of code). Hence, in the MP
version, every access to memory happens via the SSDAl-
loc’s runtime mechanism.

We use the Intel X25-V SSD (40GB) for the experi-
ments and restrict the amount of memory in the system
to 256MB for both the systems to test out-of-DRAM be-
havior. We allow up to 25 keys stored per inner node and
25 values stored in the leaf node, and we vary the key
size. We first populate the B+Tree such that it has 200
million keys, to make sure that the height of the B+Tree
is at least 5. We vary the size of the key, so that the size
of the inner object and leaf node object vary. We perform
2 million updates (values are updated) and lookups.

Figure 5(b) shows that MP and OPP provide much
higher performance than using SSD-swap. As the key
size increases from 4 to 64 bytes, the size of the nodes
increases from 216 bytes to 1812 bytes. The perfor-
mance of SSD-swap and MP is constant in all cases (with
MP performing 3.8 times better than SSD-swap with log-
structured writes) because they access a full page for al-
most every node access, regardless of node size, increas-
ing the size of the total dirty data, thereby performing
more erasures on the SSD. OPP, in comparison, makes
smaller reads when the node size is small and its perfor-
mance scales with the key size in the B+Tree. We also re-
port that across SSDs, B+Tree operations via OPP were
1.4–3.2 times faster when compared to MP and 4.3–12.7
times faster than when compared to SSD-swap (for a 64
byte key). In the next evaluation setting, we demonstrate
how OPP makes the best use of DRAM transparently.

5.5 HashCache Benchmarks
Our final application benchmark is the efficient Web
cache/WAN accelerator index based on HashCache [9].
HashCache is an efficient hash table representation that
is devoid of pointers; it is a set-associative cache index
with an array of sets, each containing the membership
information of a certain (usually 8–16) number of ele-
ments currently residing in the cache. We wish to use
an SSD backed index for performing HTTP caching and
WAN Acceleration for developing regions. SSD backed
indexes for WAN accelerators and data deduplicators are
interesting because only flash can provide the neces-
sary capacity and performance to store indexes for large
workloads. A netbook with multiple external USB hard
drives (upto a terabyte) can act as a caching server [8].
The inbuilt DRAM of 1–2 GB would not be enough to
index a terabyte hard drive in memory, hence, we pro-
pose using SSDAlloc in those settings – the internal SSD
can be used as a RAM supplement which can provide
the necessary index lookup bandwidth needed for WAN
Accelerators [16] which make many index lookups per
HTTP object.

We create an SSD based HashCache index for 3 bil-
lion entries using 32GB SSD space. For creating the in-
dex, HashCache creates a large contiguous array of 128
byte sets. Each set can hold information for sixteen el-
ements – hashes for testing membership, LRU usage in-
formation for cache maintenance and a four byte loca-
tion of the cached object. We test three configurations
of HashCache: with OPP (via ssd oalloc), MP (via
ssd malloc) and SSD-swap (via malloc) to create
the sets. In total, we had to modify 28 lines of code for
these modifications. While using OPP we made use of
Checkpointing. This is because we want to be able to
quickly reboot the cache in case of power outages (net-
books have batteries and a graceful shutdown is possible
in case of power outages).

Figure 6(a) shows, in log scale, the maximum number
of useful index entries of a web workload (highly ran-
dom) that can reside in RAM for each allocation method.
With available DRAM varying from 2GB to 4.5GB, we
show how OPP uses DRAM more efficiently than MP
and SSD-swap. Even though OPP’s Object Table uses
almost 1GB more DRAM than MP’s Object Table, OPP
still is able to hold much larger working set of index en-
tries. This is because OPP caches at set granularity while
MP caches at a page granularity, and HashCache has al-
most no locality. Being able to hold the entire working
set in memory is very important for the performance of
a cache, since it not only saves write traffic but also im-
proves the index response time.

We now present some reboot and recovery time mea-
surements. Rebooting the version of HashCache built
with OPP Checkpointing for a 32GB index (1.1GB Ob-

13

ject Table) took 17.66 sec for the Kingston SSD (which
has a sequential read speed of 70 MBPS).

We also report performance improvements from us-
ing OPP over MP and SSD-swap across SSDs. For
SSDs with parallelism, we partition the index horizon-
tally across multiple threads. The main observation is
that using MP or SSD-swap would not only reduce per-
formance but also undermine reliability by writing more
number of times and more data to the SSD. OPP’s per-
formance is 5.3–17.1 times higher than when using SSD-
Swap, and 1.3-3.3 times higher than when using MP
across SSDs (50% insert rate).

6 Conclusion
SSDAlloc provides a hybrid memory management sys-
tem that allows new and existing applications to easily
use SSDs to extend the RAM in a system, while perform-
ing up to 17 times better than SSD-swap, up to 3.5 times
better than log-structured SSD-swap and increasing the
SSD’s lifetime by a factor of up to 30 with minimal code
changes, limited to memory allocation. The performance
of SSDAlloc applications is close to that of custom-
developed SSD applications. We demonstrate benefits
of SSDAlloc in a variety of contexts – a data center ap-
plication (memcached), a B+Tree index, a packet cache
backend and an efficient hashtable representation (Hash-
Cache), which required only minimal code changes, lit-
tle application knowledge, and no expertise in the inner
workings of SSDs.

7 Acknowledgments
We would like to thank our shepherd, Eddie Kohler,
as well as the anonymous NSDI reviewers. This re-
search was partially supported by the NSF Awards CNS-
0615237, CNS-0916204 and CNS-0519829.

References
[1] Boost, . http://www.boost.org/.
[2] Calibrator, . http://homepages.cwi.nl/˜manegold/

Calibrator/#6.
[3] Scaling Memcaced at Facebook, . http://www.facebook.

com/note.php?note_id=39391378919.
[4] Memcached, . http://www.danga.com/memcached/.
[5] ptmalloc, . http://www.malloc.de/en/.
[6] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and S. Nath.

Cheap and Large CAMs for High Performance Data-Intensive
Networked Systems. In Proc. 7th USENIX NSDI, San Jose, CA,
Apr. 2010.

[7] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy nodes.
In Proc. 22nd ACM Symposium on Operating Systems Principles
(SOSP), Big Sky, MT, Oct. 2009.

[8] A. Badam and V. S. Pai. Beating Netbooks into Servers: Mak-
ing Some Computers More Equal Than Others. In Proc. 3rd
ACM Workshop on Networked Systems for Developing Regions
(NSDR), BigSky, MO, 2009.

[9] A. Badam, K. Park, V. S. Pai, and L. L. Peterson. Hashcache:
Cache storage for the next billion. In Proc. 6th USENIX NSDI,
Boston, MA, Apr. 2009.

[10] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer.
Non-volatile memory for fast, reliable file systems. In Proc. AS-
PLOS’92, 1992.

[11] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design for
high-performance flash disks. Operating Systems Review, 42(2):
88–93, 2007.

[12] M. Castro, A. Adya, B. Liskov, and A. C. Myers. Hac: Hy-
brid adaptive caching for distributed storage systems. In Proc.
16th ACM Symposium on Operating Systems Principles (SOSP),
Saint-Malô, France, Oct. 1997.

[13] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, D. Burger, B. Lee,
and D. Coetzee. Better I/O Through Byte-Addressable, Persistent
Memory. In Proc. 22nd ACM Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, Oct. 2009.

[14] B. Debnath, S. Sengupta, and J. Li. Chunkstash: Speeding up in-
line storage deduplication using flash memory. In Proc. USENIX
Annual Technical Conference, Boston, MA, June 2010.

[15] P. V. der Linder. Expert C Programming: Deep C Secrets. Pren-
tice Hall, Englewood Cliffs, N.J, 1994.

[16] S. Ihm, K. Park, and V. S. Pai. Wide-area Network Acceleration
for the Developing World. In Proc. USENIX Annual Technical
Conference, Boston, MA, June 2010.

[17] T. Kgil and T. N. Mudge. Flashcache: A NAND flash memory file
cache for low power web servers. In Proc. of CASES’06, 2006.

[18] S. Ko, S. Jun, Y. Ryu, O. Kwon, and K. Koh. A New Linux Swap
System for Flash Memory Storage Devices. In In ICCSA’09,
2008.

[19] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim. A
case for flash memory SSD in enterprise database applications.
In Proc. ACM SIGMOD, Vancouver, BC, Canada, June 2008.

[20] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi. Operat-
ing system support for NVM+DRAM hybrind main memory. In
Proc. HotOS XII, Monte Verita, Switzerland, May 2009.

[21] D. Narayanan, E. Thereska, A. Donelly, S. Elnikety, and A. Row-
stron. Migrating server storage to ssds, analysis of tradeoffs. In
Proceedings of EuroSys’09, 2009.

[22] M. Rosenblum and J. K. Ousterhout. The design and implemen-
tation of a log-structured file system. ACM Transactions on Com-
puter Systems, 10(1):26–52, 1992.

[23] M. Saxena and M. M. Swift. Flashvm: Virtual memory manage-
ment on flash. In Proc. USENIX Annual Technical Conference,
Boston, MA, June 2010.

[24] C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An efficient b-tree layer
for flash-memory storage systems. In Proccedings of RTCSA’04,
2004.

[25] M. Wu and W. Zwaenepoel. eNVy: A non-volatile, main mem-
ory storage system. In Proc. 6th International Conf. on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS), San Jose, CA, Oct. 1994.

14

