
Advances in Computational Stereo
Myron Z. Brown, Member, IEEE, Darius Burschka, Member, IEEE, and

Gregory D. Hager, Senior Member, IEEE

Abstract—Extraction of three-dimensional structure of a scene from stereo images is a problem that has been studied by the

computer vision community for decades. Early work focused on the fundamentals of image correspondence and stereo geometry.

Stereo research has matured significantly throughout the years and many advances in computational stereo continue to be made,

allowing stereo to be applied to new and more demanding problems. In this paper, we review recent advances in computational stereo,

focusing primarily on three important topics: correspondence methods, methods for occlusion, and real-time implementations.

Throughout, we present tables that summarize and draw distinctions among key ideas and approaches. Where available, we provide

comparative analyses and we make suggestions for analyses yet to be done.

Index Terms—Computational stereo, stereo correspondence, occlusion, real-time stereo, review.
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1 INTRODUCTION

COMPUTATIONAL stereo for extraction of three-dimensional
scene structure has been an intense area of research for

decades. Early work, conducted in the 1970s and early 1980s,
was primarily done by the Image Understanding (IU)
community and funded by the Advanced Research Projects
Agency (ARPA). Barnard and Fischler [4] reviewed stereo
research through 1981, focusing on the fundamentals of
stereo reconstruction, criteria for evaluating performance,
and a survey of well-known approaches at that time. Stereo
continued to be a significant focus of research in the computer
vision community through the 1980s. Dhond and Aggarwal
[23] reviewed many stereo advances in that decade, including
a wealth of new matching methods, the introduction of
hierarchical processing, and the use of trinocular constraints
to reduce ambiguity in stereo. By the early 1990s, stereo
research had, in many ways, matured. Although some
general stereo matching research continued, much of the
community’s focus turned to more specific problems. In an
unpublished report, Koschan [47] surveyed stereo techniques
developed between 1989 and 1993, including early research
on occlusion and transparency, active and dynamic stereo,
and real-time stereo implementations. Substantial progress in
each of these lines of research has been made in the last decade
and new trends have emerged.

In this paper, we review advances in computational stereo
over roughly the last decade. Overall, significant progress has
been made in several areas, including new techniques for
area- and feature-based matching, methods for dealing with
occlusion, multicamera stereo, stereo and motion, and real-
time implementations. Due to space limitations, we have
decided to focus this review on three topics: correspondence

methods, methods for dealing with occlusion, and real-time
implementations. Recent books by Hartley and Zisserman
[33] and Faugeras and Luong [28] provide a wealth of
information on the geometric aspects of multiple view stereo.
We have also elected not to discuss recent developments in
performance analysis but instead refer to a very complete and
recent discussion by Scharstein and Szeliski [69] (See also
http://www.middlebury.edu/stereo for implementations,
test data, and results).

No review of this nature can cite every paper that has been
published. We have included what we believe to be a
representative sampling of important work and broad trends
from the previous decade. In many cases, we provided
additional tables of references in order to better summarize
and draw distinctions among key ideas and approaches. We
have also provided quantitative comparisons of algorithm
complexity and performance wherever possible.

The remainder of this paper is structured as follows:
Section 2 briefly reviews the fundamentals of computational
stereo and establishes basic terminology. Section 3 discusses
local and global correspondence methods. Section 4 discusses
the problem of occlusion and presents a taxonomy of
methods for handling it. Section 5 surveys the state of the
art in real-time stereo implementations and discusses the
progression of stereo systems from special-purpose hard-
ware to general-purpose computers. We conclude in Section 6
and offer our impressions of current and future trends in
computational stereo.

2 COMPUTATIONAL STEREO

Computational stereo refers to the problem of determining
three-dimensional structure of a scene from two or more
images taken from distinct viewpoints. The fundamental
basis for stereo is the fact that a single three-dimensional
physical location projects to a unique pair of image locations
in two observing cameras (Fig. 1). As a result, given two
camera images, if it is possible to locate the image locations
that correspond to the same physical point in space, then it is
possible to determine its three-dimensional location.

The primary problems to be solved in computational
stereo are calibration, correspondence, and reconstruction.
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Calibration is the process of determining camera system
external geometry (the relative positions and orientations of
each camera) and internal geometry (focal lengths, optical
centers, and lens distortions). Accurate estimates of this
geometry are necessary in order to relate image information
(expressed in pixels) to an external world coordinate system.
The problem of estimating calibration is, at this point, well-
understood and high-quality toolkits are available (e.g.,
http://www.vision.caltech.edu/bouguetj/calib_doc/ and
links therein). For good discussions of recent work on
calibration, see [28] and [33]. In our discussions below, we
assume the camera calibration to be static and known.

Consider now the camera configuration shown in Fig. 1.
We define the baseline of the stereo pair to be the line
segment joining the optical centers OL and OR. In the
nonverged geometry depicted in Fig. 1, both camera
coordinates axes are aligned and the baseline is parallel to
the camera x coordinate axis. It follows that, for the special
case of nonverged geometry, a point in space projects to two
locations on the same scan line in the left and right camera
images. The resulting displacement of a projected point in
one image with respect to the other is termed disparity. The
set of all disparities between two images is called a disparity
map. Clearly, disparities can only be computed for features
visible in both images; features visible in one image but not
the other are said to be occluded. How to handle occluded
features is one of the key problems in computational stereo
and is further discussed in Section 4.

In practice, we are given two images, and, from the
information contained in this image, we must compute
disparities. The correspondence problem consists of determin-
ing the locations in each camera image that are the projection
of the same physical point in space. No general solution to the
correspondence problem exists, due to ambiguous matches
(e.g., due to occlusion, specularities, or lack of texture). Thus,
a variety of constraints (e.g., epipolar geometry) and
assumptions (e.g., image brightness constancy and surface
smoothness) are commonly exploited to make the problem
tractable. For a complete discussion, see chapter 4 of [43].

The reconstruction problem consists of determining three-

dimensional structure from a disparity map, based on

known camera geometry. The depth of a point in space P

imaged by two cameras with optical centers OL and OR is

defined by intersecting the rays from the optical centers

through their respective images of P , p, and p0 (see Fig. 1).

Given the distance between OL and OR, called the baseline T ,

and the focal length f of the cameras, depth at a given point

may be computed by similar triangles as

Z ¼ f T
d
; ð2:1Þ

where d is the disparity of that point, d ¼ xÿ x0 (from
Fig. 1), after being converted to metric units. This process
is called triangulation.

In practice, it is difficult to build stereo systems with
nonverged geometry. However, it is well-known that
arbitrary stereo image pairs (i.e., with verged geometry)
may also be rectified (resampled) to nonverged geometry by
exploiting a binocular geometric constraint, commonly
referred to as the epipolar constraint. Fig. 2 shows the imaging
geometry for two cameras with optical centersOL andOR. A
point P in the scene is imaged by the left and right cameras
respectively as points p and p0. The baseline T and optical
raysOL to P andOR to P define the plane of projection for the
point P , called the epipolar plane. This epipolar plane
intersects the image planes in lines called epipolar lines. The
epipolar line through a point p0 is the image of the opposite
ray, OL to P through point p. The point at which an image’s
epipolar lines intersect the baseline is called the epipole (e and
e0 for p and p0, respectively), and this point corresponds to the
image of the opposite camera’s optical center as imaged by
the corresponding camera. Given this unique geometry, the
corresponding point p0 of any point p may be found along its
respective epipolar line. By rectifying the images such that
corresponding epipolar lines lie along horizontal scan-lines,
the two-dimensional correspondence search problem is
again reduced to a scan-line search, greatly reducing both
computational complexity and the likelihood of false
matches. See [82] and [91] for details on algorithms to
compute this rectification.

3 CORRESPONDENCE

Asnotedpreviously,stereodisparitiesmaybedeterminedina
numberof waysandbyexploiting anumber of constraints.All
of these methods attempt to match pixels in one image with
their corresponding pixels in the other image. For simplicity,
we refer to constraints on a small number of pixels surround-
ing a pixel of interest as local constraints. Similarly, we loosely
refer to constraints on scan-lines or on the entire image as
global constraints. Table 1 outlines the principal methods for
exploiting both local and global constraints, excluding
methods that rely explicitly on more than two views.

Local methods can be very efficient, but they are
sensitive to locally ambiguous regions in images (e.g.,
occlusion regions or regions with uniform texture). Global
methods can be less sensitive to these problems since global
constraints provide additional support for regions difficult
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Fig. 1. The geometry of nonverged stereo. Fig. 2. Two arbitrary images of the same scene may be rectified along

epipolar lines (solid) to produce collinear scan lines (dashed).



to match locally. However, these methods are more

computationally expensive. Comparative results of three

of the most commonly used algorithms are shown in Fig. 3.

The following sections discuss the principal local and global

methods for stereo correspondence, their efficiencies and,

their limitations. Where available, complexity and perfor-

mance comparisons are provided.

3.1 Local Correspondence Methods

In this section, we compare and contrast several local

correspondence algorithms in terms of both performance

and efficiency. These methods fall into three broad categories:

block matching, gradient methods, and feature matching.

3.1.1 Block Matching

Block matching methods seek to estimate disparity at a point
in one image by comparing a small region about that point
(the template) with a series of small regions extracted from the
other image (the search region). As stated before, the epipolar
constraint reduces the search to one dimension. Three classes
of metrics are commonly used for block matching: correla-
tion, intensity differences, and rank metrics (see Table 2).

Normalized cross correlation (NCC) is the standard
statistical method for determining similarity. Its normal-
ization, both in the mean and the variance, makes it relatively
insensitive to radiometric gain and bias. The sum of squared
differences (SSD) metric is computationally simpler than
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TABLE 1
Stereo Matching Approaches

Fig. 3. Comparative results on images from the University of Tsukuba, provided by Scharstein and Szeliski [69]. Left to right: left stereo image,

ground truth, Muhlmann et al.’s area correlation algorithm [57], dynamic programming (similar to Intille and Bobick [36]), Roy and Cox’s maximum

flow [65], and Kolmogorov and Zabih’s graph cuts [45].



cross correlation, and it can be normalized as well. In addition
to NCC and SSD, many variations of each with different
normalization schemes have been used. One popular exam-
ple is the sum of absolute differences (SAD), which is often
used for computational efficiency. See Aschwanden and
Guggenbuhl [1] for an extensive comparison of these metrics.

Zabih and Woodfill [89] propose an alternative method for
computing correspondence by applying local nonparametric
transforms to the images before matching. In order to
eliminate sensitivity to radiometric gain and bias, a rank
transform is applied locally to regions in both images. The
rank transform for a local region about a pixel is defined as the
number of pixels in that region for which the intensity is less
than that of the center pixel. The resulting values are based on
the relative ordering of pixel intensities rather than the
intensities themselves (see Fig. 5). Since the magnitudes of
these values are much compressed, sensitivity to outliers

(e.g., due to occlusion) is also reduced. After the rank
transform is applied, block matching is performed using the
L1 norm (i.e., sum of absolute differences).

While the rank transform method reduces sensitivity to
radiometric gain and bias, it also reduces the discriminatory
power of the matching procedure since information is lost.
The relative ordering of all of the pixels surrounding a given
pixel to be transformed is encoded in a single value. Zabih and
Woodfill [89] propose a variation of the rank transform, called
the census transform, that preserves the spatial distribution of
ranks by encoding them in a bit string (see Fig. 5). Matching is
then performed using the Hamming distance (i.e., the number
of bits that differ) between bit strings. This transform
increases the dimensionality of the image data by a factor of
the local region size, making it computationally expensive.
This algorithm requires a massively parallel machine for real-
time implementation. Two such implementations exploiting
field programmable gate arrays (FPGAs) are discussed in
Section 5. Banks and Corke [3] compare the performance of
rank and census matching with those of correlation and
difference metrics. Their results indicate that rank and census
methods perform comparably to standard metrics and are
more robust to radiometric distortion and occlusion. For
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TABLE 2
Common Block-Matching Methods (See Fig. 4 for Visual Description of Terms)

Fig. 4. Block matching searches one image for the best corresponding

region for a template region in the other image. Correspondence metrics

are outlined in Table 2. Fig. 5. Example rank (left) and census (right) transforms.



many of the test scenes, the difference between normalized
cross correlation and census matching was between 5 and
9 percent of the total number of pixels.

The naı̈ve implementation of any block matching method
is very inefficient due to redundant computations. For an
image with N pixels, a template size of n pixels, and a
disparity search range of D pixels, the complexity of naı̈ve
block matching is OðNDn) operations. By keeping running
block sums, redundant computations may be avoided and
block matching complexity may be reduced to OðNDÞ
operations, making it independent of the template size.
Variations include [26], [56], [57], and [76]; [57] provides a
thorough discussion.

3.1.2 Gradient Methods

Gradient-based methods or optical flow [35], seek to
determine small local disparities between two images by
formulating a differential equation relating motion and
image brightness. In order to do this, the assumption is made
that the image brightness of a point in the scene is constant
between the two views. Then, the horizontal translation of a
point from one image to the other is computed by a simple
differential equation,

rxEð Þvþ Et ¼ 0; ð3:1Þ

where rxE denotes the horizontal component of the image
gradient, Et denotes the temporal (here referring to the
intensity differences between left and right stereo images)
derivative, and v denotes the translation between the two
images. The complexity of matching along epipolar lines
using optical flow is simply OðNÞ.

Note that only translation in the direction of the gradient
at a given point may be estimated accurately. Therefore, an
additional constraint is necessary to achieve reliable results.
If it may be assumed that disparity varies smoothly over a
small window of pixels, then the disparity at a point may be
estimated using least squares on the system of linear
differential equations at each pixel in an n pixel window of
points p1; p2; . . . ; pn about that point [51],

v ¼ ATA
ÿ �ÿ1

ATb; ð3:2Þ

where

A ¼

rxE p1ð Þ
rxE p2ð Þ

:
rxE pnxnð Þ

2664
3775 and b ¼ ÿ

Et p1ð Þ
Et p2ð Þ

:
Et pnxnð Þ

2664
3775: ð3:3Þ

The metric used here is the same sum of squared differences
(SSD) used in the block matching technique. The asymptotic
complexity is again OðNnÞ, which is comparable to
exhaustive search. In addition to estimating translation
(i.e., disparity) for each pixel, this framework may be
extended to also estimate more general transformations. For
instance, Gruen [32] estimates local affine transformations
between images in order to compensate for perspective
effects. It is worth noting that computation required to
perform the optimization grows linearly with the number of
parameters estimated.

Kluth et al. [44] have proposed an efficient implementa-
tion of least squares matching that imposes global con-
straints using array algebra [63]. The cost function,

rxEð Þvþ bþ Et ¼ 0; ð3:4Þ

includes a term b for radiometric bias. Their approach solves
forN disparities inOðN log NÞ operations [44]. While this is a
factor of log N less efficient than block matching with running
sums for a single pixel of disparity (i.e., D ¼ 1), it is about as
efficient as the gradient-based method and has the advantage
of incorporating global constraints.

In theory, gradient-based methods can only estimate
disparities up to half a pixel since the local derivatives are
only valid over that range. Since adjacent image pixels are
typically highly correlated, a pixel or more can often be
estimated in practice. However, hierarchical processing is a
necessity for applying these methods to stereo, where
disparity ranges are typically much larger than one pixel.
However, even with hierarchical processing, the amount of
parallax that this method can capture is fundamentally
limited by the size of the feature being measured.

3.1.3 Feature Matching

Block matching and gradient methods are well-known to be
sensitive to depth discontinuities, since the region of support
near a discontinuity contains points from more than one
depth. These methods are also sensitive to regions of uniform
texture in images. Feature-based methods seek to overcome
these problems by limiting the regions of support to specific
reliable features in the images (e.g., edges [8], [84], curves [72],
etc.). Of course, this also limits the density of points for which
depth may be estimated. Throughout the 1980s, feature-
matching methods for stereo correspondence received sig-
nificant attention, largely due to their efficiency. The review
by Dhond and Aggarwal [23] provides an account of much of
this work. Due to the need for dense depth maps for a variety
of applications and also due to improvements in efficient and
robust block matching methods, interest in feature-based
methods has declined in the last decade. In the following
paragraphs, we discuss two classes of feature-based ap-
proaches that have received recent attention: hierarchical
feature matching and segmentation matching.

Venkateswar and Chellappa [84] have proposed a hier-
archical feature-matching algorithm exploiting four types of
features: lines, vertices, edges, and edge-rings (i.e., surfaces).
Matching begins at the highest level of the hierarchy
(surfaces) and proceeds to the lowest (lines). The feature-
based hierarchical framework serves much the same purpose
as area-based hierarchical frameworks. It allows coarse,
reliable features to provide support for matching finer, less
reliable features, and it reduces the computational complex-
ity of matching by reducing the search space for finer levels of
features. First, edges are extracted and the feature hierarchy is
built from the bottom up based on structural (i.e., connectiv-
ity) and perceptual (i.e., parallel, collinear, and proximate)
relationships. Incompatibility relations (e.g., intersects, over-
laps, and touches) are also used to enforce consistent feature
groupings. All potential features in the hierarchy are stored as
hypotheses in a relational graph (see Fig. 6). Inconsistent
groupings are pruned from the graph by a truth maintenance
system (TMS). Feature matching is then performed between
the relational graphs of the stereo images, beginning with
surfaces and proceeding to lines. For two surfaces to match,
their component edges must match, etc. Once a higher-level
feature match has been confirmed, the component features
are no longer included in the search for other lower-level
matches since a feature cannot belong to more than one
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group. This reduces the search space significantly at each
level of the hierarchy.

Venkateswar and Chellappa [84] report the matching
complexity of each level of the hierarchy to be OðN4Þ, where
N is the number of features examined at that level, and the
typical improvement provided by hierarchical matching to be
a factor of 100. Of course, the improvement will vary with the
percentage of higher-level features successfully matched.

Another feature-based approach is to first segment the

images and then match the segmented regions [11], [62].

Birchfield and Tomasi [11] segment stereo images into small

planar patches for which correspondence is then deter-

mined. As with most feature-based methods, this reduces

the match sensitivity to depth discontinuities. However,

these planes are likely to be slanted rather than fronto-

parallel (i.e., directly facing the cameras), so the relation-

ships between segments in the two images are modeled by

six parameter affine transformations, such that

x2

y2

� �
¼ A x1

y1

� �
þ d; ð3:5Þ

where

A ¼ 1þ dxx dxy
dyx 1þ dyy

� �
and d ¼ dx

dy

� �
: ð3:6Þ

and where ðx1; y1Þ and ðx2; y2Þ are the coordinates of
corresponding points in the left and right images respec-
tively. The vector d defines the translation of a segment
between frames and the matrix A defines the in-plane
rotation, scale, and shear transformations between frames.
The parameters are computed directly from spatio-temporal
intensity gradients, as in [73]. For epipolar-rectified ima-
gery, only the horizontal parameters are computed.
Segmentation and affine parameter estimation are com-
puted iteratively, and patches with similar affine para-
meters are merged after each iteration. The segmentation
algorithm used is based on the multiway cut algorithm of
Boykov et al. [12]. A similar graph theoretic algorithm is
discussed in Section 3.2.3 for global stereo correspondence.
Unlike most feature-based methods, dense disparities are
explicitly defined for this segmentation-based method by
planar transformations. However, this approach is also
sensitive to the quality of the original segmentation.

3.2 Global Correspondence Methods

As stated above, global correspondence methods exploit
nonlocal constraints in order to reduce sensitivity to local
regions in the image that fail to match, due to occlusion,
uniform texture, etc. The use of these constraints makes the
computational complexity of global matching significantly
greater than that of local matching. This section reviews three
global optimization approaches. By far, the most common
approachtoglobalmatchingisdynamicprogramming,which
uses the ordering and smoothness constraints to optimize
correspondences in each scan-line. Two variants of dynamic
programming are presented here, the standard method and
one based on Tomasi and Manduchi’s intrinsic curves [81].
More recent graph cut, diffusion, and belief propagation
methods, all of which incorporate more general two-dimen-
sional local cohesion constraints, are also presented.

3.2.1 Dynamic Programming

Dynamic programming is a mathematical method that
reduces the computational complexity of optimization
problems by decomposing them into smaller and simpler
subproblems [20]. A global cost function is computed in
stages, with the transition between stages defined by a set of
constraints. For stereo matching, the epipolar monotonic
ordering constraint allows the global cost function to be
determined as the minimum cost path through a disparity-
space image (DSI). The cost of the optimal path is the sum of
the costs of the partial paths obtained recursively. The local
cost functions for each point in the DSI may be defined using
one of the area-based methods in Section 3.1.1. There are two
ways to construct a DSI, shown in Fig. 7. First, the axes may be
defined as the left and right scanlines, as is done by Ohta and
Kanade [60] and Cox et al. [19]. For this case, dynamic
programming is used to determine the minimum cost path
from the lower left corner to the upper right corner of the DSI.
With N pixels in a scanline, the computational complexity
using dynamic programming for this type of DSI isOðN4Þ, in
addition to the time required to compute the local cost
functions. The number of nodes in the search plane isOðN2Þ,
and the number of paths to evaluate per node is OðN2Þ. By
placing a constraint on the maximum disparity, the number of
paths to evaluate and, hence, the computational complexity
may be greatly reduced. Also, computational complexity may
bereducedat theexpenseof optimality. For instance,Cox etal.
[19] perform a greedy search in OðNDÞ. The second method
for constructing a DSI is to define the axes as the left scanline
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Fig. 6. (a) Two hypothesized surfaces and (b) their component features are represented in a relational graph. The hierarchy is built from the lowest
level to the highest (vertices, edges, and surfaces, in this example) and matching is performed from the highest to the lowest.



and the disparity range, as is done by Intille and Bobick [36].
For this case, dynamic programming is used to determine the
minimum cost path from the first column to the last column
(see Fig. 7). WithN pixels in a scanline and a disparity range of
D pixels, full global optimization requiresOðNNÞ operations
per scanline, in addition to time required to compute local cost
functions. Using dynamic programming, the complexity is
only OðN2Þ, much smaller than that of the other representa-
tion. Birchfield and Tomasi [9] propose a greedy algorithm for
reducing this complexity to OðNDlogDÞ by pruning nodes
when locally lower cost alternatives are available.

In addition to minimizing the global cost for indepen-
dent scanlines (i.e., intrascanline search), interscanline
constraints may also be applied to reduce ambiguity. Baker
[2] proposed a dynamic programming method that first
computes disparities independently for each scanline and
then detects and corrects estimates that violate interscanline
consistency constraints. Ohta and Kanade [60] proposed to
integrate the interscanline constraints into the match
process by minimizing the sum of costs over two-dimen-
sional regions defined as intervals between vertical edges.
The local cost function for each interval is defined as the
variance of the pixel intensities in that interval. Belhumeur
[5] proposed a two-stage approach, first computing
intrascanline solutions using dynamic programming and
then smoothing disparities between scanlines. This smooth-
ing is done by taking each adjacent three scanlines, fixing
the disparities of the outer two, and then recomputing the
optimum solution for the middle scanline using dynamic
programming. Cox et al. [19] propose enforcing two-
dimensional cohesiveness constraints without smoothing
by minimizing the number of horizontal and vertical

discontinuities (i.e., by penalizing discontinuities). Vertical
discontinuities are minimized between adjacent scanlines,
either in a one-pass scheme where minimization for a
scanline is constrained by the previous line, or in a two-pass
scheme where scanlines above and below a given scanline
are used to constrain the minimization. Birchfield and
Tomasi [10] introduce a vertical constraint by propagating
highly reliable disparity regions, defined by the amount of
vertical support (i.e., the number of like disparities in a local
column), into less reliable regions, bounded by intensity
gradients which are assumed to be depth discontinuities.

One of the principal advantages of dynamic program-
ming, or any global search method, is that it provides global
support for local regions that lack texture and would
otherwise be matched incorrectly. These local regions present
little difficulty for a global search since any cost function (e.g.,
intensity difference or variance) in these regions is low.
Another problem that global search seeks to resolve is
occlusion. This is more difficult since a cost function applied
near an occlusion boundary is typically high. Methods for
dealing with this difficulty have been proposed in [5] and [10].
These methods replace matching costs at occlusion bound-
aries with a small fixed occlusion cost. In Section 4.4, we
examine these approaches as part of a broader discussion of
the occlusion problem. The principal disadvantage of
dynamic programming is the possibility that local errors
may be propagated along a scan-line, corrupting other
potentially good matches. Horizontal streaks caused by this
problem may be observed in many of the disparity map
results reported in the literature (see Fig. 3).

3.2.2 Intrinsic Curves

Tomasi and Manduchi [81] propose an alternative to
conventional search for global matching, using a different
representation of image scanlines, called intrinsic curves. An
intrinsic curve is a vector representation of image descriptors
defined by applying operators (e.g., edge and/or corner
operators) to the pixels in a scanline. For N operators
p1; p2; . . . ; pN; the intrinsic curve C is defined in RN as

C ¼ p xð Þ; x 2 Rf g; p xð Þ ¼ p1 xð Þ; p2 xð Þ; . . . ; pN xð Þð Þ: ð3:7Þ

A simple example is shown in Fig. 8. The intrinsic curves here
are defined by plotting the intensities of scanline pixels
against their respective derivatives. This mapping is invariant
to translation (i.e., disparity), so, in the ideal case, matching
pixels map to the same points along a common curve. In the
general case, however, due to noise and perspective differ-
ences, matching pixels do not always map to exactly the same
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Fig. 7. (a) An example disparity-space image using left-right axes and
(b) another using left-disparity axes. Intensities shown represent the
respective costs of potential matches along the scan-lines, with lighter
intensities having lower cost.

Fig. 8. (a) Left and right image scanline intensities, (b) their derivatives, and (c) the intrinsic curves formed by plotting one against the other.



points, as can be seen in Fig. 8. Thus, the disparity search
problem is cast in intrinsic curve space as a nearest neighbor
problem. See [80] and [81] for a discussion of efficient nearest-
neighbors solutions. Ambiguities are resolved by maximizing
a global metric using dynamic programming. Once matching
has been achieved in intrinsic curve space, an inverse
mapping is applied to determine disparities. Samples of
uniform arc length on an intrinsic curve result in a nonuni-
form grid in image space, more densely sampled where the
image content is busy, and less densely sampled where the
image lacks texture (i.e., many pixels map to the same point in
intrinsic curve space). Thus, intrinsic curve matching is, in a
sense, a feature-based algorithm and produces a sparse depth
map rather than a dense one.

The principal benefit of the intrinsic curve representation is
its invariance to disparity. The nearest-neighbors distances
between points on two curves representing left and right
scanlines are not directly affected by the amount of disparity
between them in image space. Therefore, multiresolution
methods commonly used to reduce computational complex-
ity are unnecessary with this approach. Of course, this
representation is still affected by occlusion and uniform or
repetitive texture inthe imagedscene.Globaloptimization via
dynamic programming is used to compensate for such errors
in much the same way it is used for conventional search.
Occlusions in intrinsic curve space appear as unmatched arcs
in a curve. Although this is a visibly noticeable indicator, no
computational algorithm has yet been proposed to measure it.
No comparative analysis of intrinsic curves with other
correspondence methods has been published to date. Quali-
tative results (i.e., disparity maps) are reported in [81].

3.2.3 Graph Cuts

The most significant limitation of dynamic programming
for stereo matching is its inability to strongly incorporate
both horizontal and vertical continuity constraints. As
already discussed, many approaches have been proposed
to improve this situation while maintaining the dynamic
programming framework. However, these do not fully
exploit the two-dimensional coherence constraints avail-
able. An alternative approach that exploits these constraints
is to cast the stereo matching problem as that of finding the
maximum flow in a graph [20].

Let us define a directed graph G = (V, E), where V is the
vertex set and E is the edge set. The vertex set is defined
based on the selected matching representation. Suggested
representations for maximum flow graph construction
parallel those proposed for DSI construction, left-disparity
and left-right. Roy and Cox [65] propose a left-disparity
representation. The vertex set is thus defined to be

V ¼ V � [ s; tf g; ð3:8Þ

where s is the source, t is the sink, and

V � ¼ x; y; dð Þ; x 2 0; xmax½ �; y 2 0; ymax½ �; d 2 0; dmax½ �f g:
ð3:9Þ

The graph axes correspond to the image horizontal and

vertical axes and the disparity range. The edges are defined

to be

E ¼
u; vð Þ 2 V �xV �
s; x; y; 0ð Þð Þ
x; y; dmaxð Þ; tð Þ

: uÿ vk k ¼ 1
: x 2 0; xmax½ �
y 2 0; ymax½ �

8<:
9=;: ð3:10Þ

Internally, the mesh is six-connected, and the vector norm
in (3.10) constrains node pairs to be connected. Each node
has an associated cost that is defined in the same way that
the local costs are defined for dynamic programming. Each
edge has an associated flow capacity that is defined as a
function of the costs of the adjacent nodes it connects. This
nonnegative capacity limits the amount of flow that can be
sent from the source to the sink. The capacity is defined to
be infinity for both the source and the sink. A cut is a
partition of the vertex set V into two subsets separating the
source from the sink. The capacity of a cut is simply the sum
of the edge capacities making up that cut. The cut with
minimum capacity, the minimum cut, maximizes flow
through the graph (see Fig. 9). It is more intuitive with
respect to the stereo problem to consider the minimum cut
rather than its associated maximum flow. This minimum
cut is analogous to the best path along a pair of scan-lines
determined by dynamic programming extended to three
dimensions. Thus, the disparity estimates associated with
the minimum cut are not only consistent across one scan-
line but are also consistent globally throughout the image.

Naturally, graph cut methods generally require more
computations than dynamic programming. Fortunately,
many approaches have been developed for its efficient
solution. Roy and Cox [65], Zhao [92], and Thomos et al.
[79] use the well-known preflow-push lift-to-front algorithm
[20]. The worst-case complexity of this algorithm is
OðN2D2logðNDÞÞ, significantly greater than that of dynamic
programming algorithms. However, the average observed
time reported by Roy and Cox [65] is OðN1:2D1:3Þ, much closer
to that of dynamic programming. One limitation of the left-to-
front algorithm is that classical implementations require
significant memory resources, making this approach cum-
bersome for use with large images. Thomos et al. [79] have
developed an efficient data structure that reduces the
memory requirements by a factor of approximately four,
making this algorithm more manageable for large data sets.

Roy and Cox [65] provide several qualitative compar-
isons of their method versus the dynamic programming
method of Cox et al. [19]. These indicate that their
maximum flow method produces disparity maps with
fewer horizontal streaks than dynamic programming.
Thomos et al. [79] compared their implementation of
maximum flow to a variety of dynamic programming
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Fig. 9. Maximum flow representation of disparity estimation as posed by
Roy and Cox [65].



methods using a synthetic stereo pair with ground truth.
Their method correctly matched (up to an integer disparity)
only 1.62 percent more pixels than the best performing
dynamic programming method, that of Intille and Bobick
[36]. Results for Thomos et al.’s maximum flow and Intille
and Bobick’s dynamic programming were 46.74 percent
and 45.12 percent correct, respectively.

Recent work on graph cuts has produced both new
graph architectures and energy minimization algorithms.
Boykov and Kolmogorov [14] have developed an approx-
imate Ford-Fulkerson style augmenting paths algorithm,
which they show to be much faster in practice than
standard push-relabel approaches (by factors of 2 to 5 for
the examples provided). Boykov et al. [13] propose
expansion move and swap move algorithms that can simulta-
neously modify labels of arbitrarily large pixel sets.
Kolmogorov and Zabih [45] propose a graph architecture
in which the vertices represent pixel correspondences
(rather than pixels themselves) and impose uniqueness
constraints to handle occlusions. These recent graph cut
methods have been shown to be among the best performers
in [69], and examples are shown in Fig. 3.

3.2.4 Other Global Methods

While dynamic programming and more recently graph cuts
have been the most often exploited energy minimization
methods for global stereo matching, a number of other
approaches have been used as well. Two of the most notable
are nonlinear diffusion and belief propagation. Shah [71],
Scharstein and Szeliski [68], and Mansouri [52] aggregate
support using various models for nonuniform diffusion,
rather than using fixed-size, rectangular windows. We

discuss these methods more in Section 4, focusing on their

abilities to handle occlusion. Sun et al. [77] cast the global

matching problem in a Markov network framework and solve

using belief propagation. This approach has been shown to

yield results comparable to the best graph cut methods in [69].
Another class of global methods seeks to reconstruct a

scene without explicitly establishing correspondences. Fua

and Leclerc [30] model the scene as a mesh that is iteratively

updated to minimize an objective function. Faugeras and

Keriven [27] propose a similar method that models the

scene using level sets. Kutulakos and Seitz [48] represent

the scene as a volume and propose a space carving method

to refine the surface. While these methods may be applied

to binocular stereo, the object-centered representations are

most powerful when exploiting constraints from multiple

views (greater than two) of the scene to reduce sensitivity to

view-dependent effects (e.g., occlusion and shading).

4 OCCLUSION

Much of the stereo research in the last decade has focused on

detecting and measuring occlusion regions in stereo imagery

and recovering accurate depth estimates for these regions.

This section defines the occlusion problem in stereovision

and reviews three classes of algorithms for handling

occlusion: methods that detect occlusion, methods that

reduce sensitivity to occlusion, and methods that model the

occlusion geometry. Table 3 provides a summary of these

approaches. A comparative analysis of some of these

methods is also discussed.
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4.1 The Occlusion Problem Defined

The occlusion problem in stereovision refers to the fact that
some points in the scene are visible to one camera but not the
other, due to the scene and camera geometries. Fig. 10 depicts
two scenes, each with two points: one,PV , being visible to both
cameras and the other,PO, visible to only one camera. We call
the point PO half-occluded because it is occluded in one of the
views and not the other. While the depth at point PV may be
computed by stereopsis, the depth atPO is inestimable, unless
additional views are added on which the point is not occluded
or assumptions are made about the scene geometry. The half-
occlusion in the left example of Fig. 10 is commonly observed
in most scenes. The half-occlusion observed in the right
example is less common since narrow structures (e.g., fences)
that might obstruct one’s view are simply not observed in
most scenes. We call these structures narrow occluding objects.
Dhond and Aggarwal [24] define a narrow occluding object as
an occluding object the width of which is narrower than 1) the
region of support for matching or 2) the largest disparity
difference between the foreground and the background
objects. In the first case, matching is biased since two distinct
depths are competing within the same window. In the second
case, the stereo ordering constraint fails. While the problem of
narrow occlusion objects is more difficult than that of general
occlusion, both are generally addressed similarly.

4.2 Methods that Detect Occlusion

The simplest approaches to handling occlusion regions
merely attempt to detect them either before or after matching.
These regions are then either interpolated based on neighbor-
ing disparities to produce a dense depth map or simply not
used for applications requiring only a sparse depth map. The
most common approach of this type is to detect disconti-
nuities in the depth map itself after matching. Median filters
are commonly used to eliminate outliers in depth maps,
which are often caused by occlusion regions. Wildes [86]
detects discontinuities in both surface orientation and depth
by comparing local histograms of these values with a
Kolmogorov-Smirnov test. Hoff and Ahuja [34] detect depth
and orientation discontinuities by fitting local planar patches
to semicircular regions of the data. If two of these planes
making up a circular region differ in depth or orientation by
more than a threshold, there is evidence of occlusion.

Stereo match consistency may also be used to detect
occlusion boundaries. Chang et al. [15] and Fua [29] compute
two disparity maps, one based on the correspondence from

the left image to the right and the other based on the
correspondence from the right image to the left (see Fig. 11).
Inconsistent disparities are assumed to represent occlusion
regions in the scene. There are, of course, other possible
explanations for inconsistent matches, including perspective
differences, nonuniform lighting, and sensor noise. The left-
right consistency check treats all of these phenomena the
same, as sources of blunders to be replaced, typically by
interpolation. The naı̈ve implementation of left-right consis-
tency checking doubles the number of computations for
correlation. However, when correlation is implemented
using running sums as in Section 3.1.1, the additional
consistency checks may be implemented with only additional
bookkeeping and memory, not additional correlation com-
putations [3]. Due to its simplicity and overall good
performance at eliminating bad depth estimates, left-right
consistency has been implemented in many real-time stereo
systems [26], [46], [55].

The ordering constraint in stereo may also be used to detect
occlusion. The relative ordering of points along a pair of
stereo scan-lines is generally monotonic, assuming that there
are no narrow occluding objects in the scene. Yuille and
Poggio [88], Little and Gillett [50], and Silva and Santos-Victor
[74] have proposed methods that check for out of order
matches, which may indicate the presence of occlusion.

Another approach to detecting occlusion boundaries is
based on the observation that depth and orientation dis-
continuities typically give rise to image intensity edges.
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Fig. 10. Examples of typical occlusion (left) and less common narrow
occlusion (right) that may be observed when viewing a fence, for
example. The points PV in the examples are visible to both cameras, so
their depths may be estimated by stereopsis. The half-occlusion points
PO in the examples are only visible in one image, so their depths may
not be estimated.

Fig. 11. Left-right matching reverses the roles of the left ðI1Þ and right ðI2Þ images to obtain a consistency constraint that may be used to detect
occlusion or other sources of mismatch.



Cochran and Medioni [17] incorporate an edge map into their
postfiltering scheme. The disparity map is smoothed, keep-
ing only the disparities associated with edges unaltered.
Then, those points with large disparity differences between
the original and smoothed versions are rejected as belonging
to occlusion regions. Ohta and Kanade [60] match regions
between edge segments using dynamic programming, thus
avoiding the occlusion problem altogether. The method of
Birchfield and Tomasi [11], discussed in Section 3.1.3, also
avoids the occlusion problem by matching segments deli-
neated by intensity edges. The assumption that occlusion
boundaries and intensity edges are coincident may also be
used to model occlusion directly rather than avoid it.
Methods that take this route are discussed in Section 4.4.

4.3 Methods that Reduce Sensitivity to Occlusion

The use of robust methods is one way to reduce the sensitivity
of matching to occlusion and other image differences (e.g.,
perspective differences and sensor noise). Sara and Bajcsy [66]
propose a robust normalized cross correlation algorithm
based on robust covariance matrix estimation. Stewart [75]
characterizes the behavior of a number of robust correlation
measures near discontinuities (i.e., occlusion regions). These
include least median of squares (LMS), least trimmed squares
(LTS), M-estimators, Hough transforms, RANSAC, and
MINPRAN. All of these methods provide some robustness
to gross outliers. However, the presence of occlusion in a
stereo image pair produces disparity discontinuities that are
coherent. That is, while they are outliers to the structure of
interest, theyare inliers toadifferentstructure. Thiscoherence
introduces a bias in robust estimates. Stewart calls these
coherent outliers pseudo-outliers and provides suggestions
for the careful selection of robust estimators to handle them.

Zabih and Woodfill [89] propose nonparametric trans-
forms, rank, and census, that are applied to image intensities
before correlation (see Section 3.1.1). Since these methods rely
on relative ordering of intensities rather than the intensities
themselves, they are somewhat robust to outliers. These rank
measures, however, are sensitive to distortion due to
perspective projection. To remedy this problem, Bhat and
Nayar [7] propose an alternative ordinal measure based on
the distance between rank value positions rather than the rank
values themselves. This provides some robustness to per-
spective distortion. The fundamental limitation of all of these
approaches is that information is lost at each step, making the
discriminatory power of these methods low. Scherer et al. [70]
propose a minor modification to Bhat and Nayar’s ordinal
coefficient, incorporating some of the information lost in the
original method. They report significantly improved dis-
criminatory power using this new coefficient. A comparison
of rank and robust normalized cross correlation for dealing
with occlusion may be found in [66]. Their results indicate that
rank correlation and robust normalized cross correlation
perform comparably and that both reduce the number of
erroneous disparity estimates due to occlusion by about a
factor of 2 for small window sizes (7 x 7 pixels) and
significantly more for larger window sizes.

Another approach to reduce sensitivity to occlusion is to
adaptively resize the window size and shape in order to
optimize the match similarity near occlusion boundaries.
Kanade and Okutomi [39] propose an iterative method for
determining the window size. The window size is initi-
alized to be very small, and the match uncertainty is

computed. The window size is then expanded by one pixel
in each direction independently, and the uncertainty is
computed. If the uncertainty increases when the window is
expanded in a given direction, then that direction is
prohibited from expanding. This procedure is applied
iteratively until all directions become prohibited. As
occluding boundaries need not appear as vertical edges in
an image, rectangular windows cannot provide maximum
local support. To handle the more general case, Shah [71]
and Scharstein and Szeliski [68] propose using nonuniform
diffusion (i.e., weighted local aggregation of support rather
than a fixed rectangular window) to expand the support
region. Mansouri et al. [52] propose a similar approach, but
allow the diffusion equations to be anisotropic near
intensity edges to better localize depth discontinuities. An
interesting approach by Zitnick and Kanade [90] combines
diffusion of the support region with inhibition of support
for pixels along similar lines of sight. This ensures that the
diffusion process does not violate the uniqueness con-
straint. Fusiello et al. [31] propose a method based on
multiple windows. This method considers nine correlation
windows centered about the desired point and takes the
estimated disparity with the minimum error. The window
associated with this disparity is likely to cover a relatively
constant depth region. Note that this does not require any
additional correspondence computations and that it effec-
tively blurs less certain regions of the depth map, thus
limiting the achievable localization. Of course, in addition
to improving stereo matching performance near occlusion
boundaries, all of these methods help reduce erroneous
estimates in small image regions with little texture by
providing a more sufficient region of support.

4.4 Methods that Model Occlusion Geometry

While the above methods for detecting and reducing
sensitivity to occlusion each offer some benefit and most are
computationally affordable, they do not take advantage of all
available search constraints. It is desirable to integrate
knowledge of the occlusion geometry itself into the search
process. One framework within which this may be done
simply is global search. Belhumeur [5] defines priors for a
series of Bayesian estimators, each handling a more compli-
cated model of the world. These are used to define cost
functions for dynamic programming. The first and simplest
model assumes surface smoothness, and the dynamic
programming complexity is simply OðND2Þ, where N is the
number of pixels in the scan-line andD is the disparity range.
The second model assumes object boundaries in addition to
surface smoothness and its implementation also has com-
plexityOðND2Þ Belhumeur’s third and most realistic model
of the world includes terms for surface slope and creases in
addition to object boundaries and surface smoothness and
has complexity OðND2Q2Þ, where D is the disparity range
and Q is the range of slope values modeled.

Variations of Belhumeur’s models, particularly the second
model, have been used within both dynamic programming
(see Section 3.2.1) and graph cut (see Section 3.2.3) frame-
works for determining optimal disparity maps. Birchfield
and Tomasi [10] have implemented a dynamic programming
algorithm with an occlusion boundary cost and pruning to
reduce the computational complexity to OðNDlogDÞ. Occlu-
sion boundaries are assumed to lie on intensity edges. The
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lower the cost associated with an occlusion boundary, the
more depth discontinuities are facilitated. The higher the cost,
the smoother the disparity maps. Intille and Bobick [36]
reduced the cost of diagonal edge segments associated with
orientation occlusions to zero, while enforcing the usual
occlusion cost for vertical segments. The graph cut methods
discussed in Section 3.2.3 also make similar assumptions and
include similar occlusion costs.

Another method of detecting occlusion regions and
recovering depth in those regions is to exploit multiple
cameras. Kanade et al. [38] propose a multiple baseline
algorithm exploiting a translating camera. By measuring
disparity in terms of inverse distance, SSD metrics for
multiple stereo pairs with variable but known baselines
may be integrated easily. Ambiguity in one stereo pair due to
occlusion is not present in another stereo pair in which the
given point is jointly visible. Thus, by summing the
SSD metrics over all stereo pairs, the effects of these
ambiguities are significantly reduced. Nakamura et al. [58]
and Satoh and Ohta [67] propose a similar approach in what
they call stereo by eye array (SEA), but they directly model
occlusion in an attempt to remove its effect altogether. They
define occlusion masks based on estimated probabilities of
occlusion patterns observable by a square nine-camera
configuration. These masks are hypothesized as occlusion
configurations for each point to be matched in all stereo
camera images, and the error is minimized over the masks to
determine the correct configuration. Thus, only those images
in which a point is visible are used to determine that point’s
disparity.

Active vision may also be exploited to detect occlusion
regions and to recover depth in those regions by moving the
camera (for motion stereo) or stereo rig so as to bring the
occluded point into joint view. Ching [16] exploits active
vision to discriminate between occlusion and specular
highlights. One of the two cameras for stereo is rotated, and
the change in width of the suspected occlusion region is
examined. Those regions that do not grow or shrink
predictably are assumed to be due to specular highlights. Li
and Chin [49] propose a method for detecting occlusion in a
sequence of images captured by a translating camera.
Occlusion is predicted for a frame or set of frames based on
the relative rates of position change between edges in stereo
image pairs as the camera translates. The cases of occlusion at
the beginning of the sequence, in the middle of the sequence,
and at the end of the sequence are considered. Pilon and
Cohen [61] propose an active stereo method for a translating
stereo rig. At a given time instance, the stereo rig is translated
such that one of the cameras from the previous time instance
is roughly centered between the current camera positions.
The image from the roughly centered camera is taken to be a
reference, and it is assumed that occlusions between the two
cameras at the new time instance and the reference image are
small. Note that this is equivalent to mounting a third camera
to the rig. Each current image is mapped to the reference
using optical flow and then projected into the other camera’s
coordinates. Occlusion regions are detected as position
jumps between views. The depths for these occlusion regions
are then recovered based on the jump lengths as measured
from two independent positions, again requiring active
camera motion. A more general approach to handling
occlusion via active vision is proposed by Reed and Allen
[64], who describe a sensor planning system that minimizes

the number of views required to capture all points in the
scene. A detailed discussion of sensor planning is beyond the
scope of this paper. A review of this topic is provided in
Tarabanis et al. [78].

4.5 Comparisons

Relatively little has been done to compare the variety of
algorithms proposed for detecting, reducing sensitivity to, or
measuring occlusions. Egnal and Wildes [25] recently
conducted an analysis of four of the simpler approaches.
All of these fall into the detecting occlusion class of algorithms
discussed above. The four methods compared are bimodality,
match goodness jumps, left-right checking, and order checking.
Bimodality measures a ratio of disparity peaks in a small
window. Occlusions are hypothesized for points for which
the ratio is large. This is similar to the disparity discontinuity
method described above. Match goodness jumps measure
sharp drops in the match metric (e.g., correlation score).
Points with low scores that are surrounded by points with
high scores are assumed to be occlusions. Left-right checking
measures the consistency of matching in one direction versus
the other and is discussed above. Inconsistency is taken to
imply occlusion. Order checking determines whether or not
neighboring points violate the epipolar ordering constraint
described above. If so, an occlusion is assumed to be present.
The first two methods were found to predict occlusion points
well, but they also falsely detect a large number of matchable
points. The second two approaches, particularly left-right
checking, reliably predicted occlusion points without a large
number of false detects. None of these methods is capable of
determining whether occlusion is the source of the error or if it
is something else (e.g., image noise, lack of texture, etc.). For
many applications, this distinction is irrelevant. However,
when precise knowledge of occlusion is desired, model-
based methods like those described above may be more
suitable. The comparative study of Egnal and Wildes [25] is a
good first step toward evaluating occlusion methods. A more
comprehensive study is needed that includes many of the
methods from all three classes (detecting occlusion, reducing
sensitivity to occlusion, and modeling occlusion directly)
discussed above.

5 REAL-TIME STEREO IMPLEMENTATIONS

In the past decade, real-time dense disparity map stereo
(30 frames per second or faster) has become a reality, making
the use of stereo processing feasible for a variety of
applications, some of which are discussed in the next section.
Until very recently, all truly real-time implementations made
use of special purpose hardware, like digital signal processors
(DSP) or field programmable gate arrays (FPGA). However,
with ever increasing clock speeds and the integration of single
instruction multiple data (SIMD) coprocessors (e.g., Intel
MMX) into general-purpose computers, real-time stereo
processing is finally a reality for common desktop computers.
This section reviews the progression of real-time stereo
implementations over the past decade. A summary of real-
time stereo systems and their comparative performances is
provided in Table 4. Timing estimates have been extracted
from previous reports [18], [41], [46].

In 1993, Faugeras et al. reported on a stereo system
developed at INRIA and implemented it for both DSP and
FPGA hardware [26]. They implemented normalized
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correlation efficiently using the method discussed briefly in
Section 3.1.1 and included left/right matching for consis-
tency checking. They used a right-angle trinocular stereo
configuration, computing two depth maps and then
merging them to enforce joint epipolar constraints. The
DSP implementation exploited the MD96 board [53], which
was made up of four Motorola 96002 DSPs. The FPGA
implementation was designed for the PeRLe-1 board,
which was developed at DEC-PRL and was composed of
23 Xilinx logic cell arrays (LCA). The algorithms were also
implemented in C for a Sparc 2 workstation. While much
more difficult to program, the FPGA implementation
outperformed the DSP implementation by a factor of 34
and the Sparc 2 implementation by a factor of 210,
processing 256 x 256 pixel images at approximately 3.6 fps.

Also in 1993, Nishihara reported on a stereo system based
on the PRISM-3 board developed by Teleos Research [59].
This system used Datacube digitizer hardware, custom
convolver hardware, and the PRISM-3 correlator board,
which makes extensive use of FPGAs. For robustness and
efficiency, this system used area correlation of the sign bits
after applying a Laplacian of Gaussian filter to the images.
Konolige also reports on the performance of a PC implemen-
tation of these algorithms by Nishihara in 1995 [46]. This
system was capable of 0.5 fps with 320 x 240 pixel images.

One system came close to achieving frame-rate in 1993.
Webb implemented the multibaseline stereo algorithms of
Kanade et al. on the CMU Warp machine [21], [38], [85].
Three images were used for this system. For efficiency, the

sum of SAD (SSAD) was implemented. 64 iWarp processors
were used to achieve 15 fps with 256 x 240 pixel images.

In 1995, Matthies et al. reported on a real-time stereo
system developed at the Jet Propulsion Laboratory (JPL)
using a Datacube MV-200 image processing board and a
68040 CPU board [55]. This performed SSD matching on a
Laplacian (equivalently, difference of Gaussians) image
pyramid to determine disparities. Left/right matching was
used for consistency checking. This system was capable of
processing approximately 1.7 fps with 256 x 240 pixel images.
The application of this system to obstacle detection for
unmanned ground vehicles may be found in [55]. A complete
discussion of their algorithm development and details on an
earlier version of the system is provided in [54].

Also in 1995, Kimura et al. reported on a video-rate stereo
machine developed at CMU [41]. This was the first published
stereo system capable of 30 fps (with 256 x 240 pixel images).
Like the iWarp implementation at CMU, this system also
exploited multibaseline stereo to improve depth estimates.
The prototype system was equipped with six cameras. Also,
like the iWarp implementation, the SSAD was implemented
for efficiency. These algorithms were implemented on
custom hardware and an array of eight C40 DSPs. The
CMU video-rate stereo machine has been used for a variety of
applications, including virtual reality and z keying [40].

In 1997, Konolige reported on a real-time stereo system
developed at SRI International [46]. The SRI Small Vision
Module (SVM) was designed to operate at low power and in a
small package, as opposed to the large custom hardware
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arrays previously developed for stereo processing. The
original SVM consisted of two CMOS 320 x 240 grayscale
imagers and lenses, low power A/D converters, a DSP (ADSP
2181, running at 33 MHz), and a small flash memory, all on a
2’’ by 3’’ circuit board. The second generation SVM, or SVM II,
uses a newer Texas Instruments DSP (TMS320C60x) that runs
at 200 MHz and outperforms the ADSP 2181 by a factor of 30.
SVM II is capable of processing 320 x 240 pixel images at
greater than 30 fps. In addition to the SVM, SRI has
implemented a version of their algorithms in C for Pentium
microprocessors with MMX, called the Small Vision System
(SVS). The SVS is capable of processing 320 x 240 pixel images
at 12 fps on a 233 MHz Pentium II. Both the SVM II and the SVS
use SAD on LoG transformed image pixels to determine the
disparities and left/right checking for post-filtering. The SVS
has been used for real-time tracking [6] and is distributed
commercially by Videre Design. Another commercial pro-
duct for real-time stereo is the Point Gray Digiclops trinocular
stereovision system. The Triclops software development kit
(SDK) bundled with it as of 1997 performed stereo at 6 fps for
320 x 240 pixel images on a 450 MHz Pentium II, as reported in
[42]. The algorithms are similar to those used for SRI’s SVS.
Both of these commercial systems provide sub-pixel inter-
polation. Videre Design claims that SVS provides 1/16 pixel
interpolation, while Point Gray claims that their Digiclops
provides 1/256 pixel interpolation. Note that the precision of
any subpixel estimate depends greatly on image quality and
content and that the amount of interpolation required varies
by application and by camera selection. The required
interpolation s for a given range resolution is defined by

s ¼ Tf�Z

pZ2 ÿ pZ�Z
; ð5:1Þ

where p is the pixel size, Z is the range to the object imaged,
T is the baseline, f is the focal length, �Z is the desired
range resolution, and all measurements are in millimeters.
For example, with a 7.5 �m pixel size, a 5 m range, a 90 mm
baseline, 4.8 mm focal length, and a desired range
resolution of 20 mm, the required subpixel interpolation
would be 1/22. In general, it is difficult to achieve subpixel
precision better than 1/10 pixel for arbitrary scenes.

Two new real-time stereo systems exploiting FPGAs were
also developed in 1997. Woodfill and Von Herzen [87]
implemented census matching [89] for stereo on the custom
PARTS engine developed at Interval Research Corporation.
The PARTS engine is made up of 16 Xilinx 4025 FPGAs and
fits on a standard PCI card. It is capable of processing 320 x
240 pixel images at 42 fps. Corke and Dunn [18] also
implemented census matching on their Configurable Logic
Processors (CLP), VME bus circuit boards made up of several
FPGAs each. Their system is capable of processing 256 x
256 pixel images at 30 fps.

In 1999, Kimura et al. reported on a nine camera stereo
machine called SAZAN [42]. Like the CMU stereo machine
and iWarp implementations, this system is also based on the
multibaseline stereo algorithm. In addition to the added
robustness that multiple cameras provide, low-pass filtering
local regions of the individual SAD surfaces further resolve
matching ambiguities. The name SAZAN, a Japanese term for
3 x 3 multiplication, is a reference to the significant amount of
convolution usedin this system. SAZAN is implemented with
linear shift invariant (LSI) digital filters for LoG filtering and

GaussiansmoothingandFPGAsforsimilaritycomparisons. It
is capable of processing 320 x 240 pixel images at 20 fps.

With ever-increasing clock speeds and the integration of
SIMD coprocessors into general-purpose computers, real-
time stereo processing is finally a reality for common desktop
computers. Point Grey’s Triclops now runs at 20 fps for 320 x
240 pixel images on a 1.4 GHz Pentium IV machine. Likewise,
SRI’s SVS now runs at 30 fps for 320 x 240 pixel images on a
700 MHz Pentium III. With inexpensive and compact real-
time systems like these now commercially available, many
applications that previously were impractical (e.g., tracking
[6], [22] and virtual reality [40]) are now being intensely
explored.

6 CONCLUSIONS

After roughly 30 years of research on computational stereo
(in the computer vision community), many elements of
stereo algorithms are well understood. In particular,
accurate stereo calibration and efficient algorithms for local
correspondence are now well understood. As a result,
during the past decade, we have seen the focus turn from
the fundamentals of stereopsis to more difficult problems,
such as global correspondence and methods for handling
occlusion. However, a comprehensive evaluation and
comparison of these more advanced algorithms (and even
some standard correspondence methods) has yet to be
done. One of our goals in this review has been to
consolidate existing quantitative results and comparative
analyses and to suggest analyses remaining to be done. We
believe that much of the stereo work in the coming decade
should and will be bolstered by more complete quantitative
performance evaluations. The recent article by Scharstein
and Szeliski [69] is a promising first step.

Perhaps the most practically significant advance in the last
decade has been the appearance of real-time stereo systems,
first on special-purpose hardware and, more recently, on
general-purpose computers. Due in large part to these real-
time implementations, research on real-time stereo applica-
tions has blossomed in the latter part of this decade. Real-time
algorithms, however, are still relatively simplistic, and most
of the global matching and occlusion handling methods
discussed do not currently run in realtime. More demanding
potential applications (e.g., virtual reality) require both real-
time algorithms and very precise, reliable, and dense depth
estimates. Solving the problems of stereo timing, precision,
and reliability jointly remains a challenging research topic
that we predict will see progress in the coming decade.

REFERENCES

[1] P. Aschwanden and W. Guggenbuhl, “Experimental Results from
a Comparative Study on Correlation-Type Registration Algo-
rithms,” Robust Computer Vision, Forstner and Ruwiedel, eds.,
pp. 268-289, Wickmann, 1993.

[2] H.H. Baker, “Depth from Edge and Intensity Based Stereo,”
Technical Report AIM-347, Artificial Intelligence Laboratory,
Stanford Univ., 1982.

[3] J. Banks and P. Corke, “Quantitative Evaluation of Matching
Methods and Validity Measures for Stereo Vision,” Int’l J. Robotics
Research, vol. 20, no. 7, 2001.

[4] S.T. Barnard and M.A. Fischler, “Computational Stereo,” ACM
Computing Surveys, vol. 14, pp. 553-572, 1982.

[5] P.N. Belhumeur, “A Bayesian Approach to Binocular Stereopsis,”
Int’l J. Computer Vision, vol. 19, no. 3, pp. 237-260, 1996.

[6] D. Beymer and K. Konolige, “Real-Time Tracking of Multiple
People Using Continuous Detection,” Proc. IEEE Frame Rate
Workshop, 1999.

1006 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003



[7] D.N. Bhat and S.K. Nayar, “Ordinal Measures for Image
Correspondence,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 20, pp. 415-423, 1998.

[8] F. Bigone, O. Henricsson, P. Fua, and M. Stricker, “Automatic
Extraction of Generic House Roofs from High Resolution Aerial
Imagery,” Proc. European Conf. Computer Vision, pp. 85-96, 1996.

[9] S. Birchfield and C. Tomasi, “Depth Discontinuities by Pixel-to-
Pixel Stereo,” Technical Report STAN-CS-TR-96-1573, Stanford
Univ., 1996.

[10] S. Birchfield and C. Tomasi, “Depth Discontinuities by Pixel-to-
Pixel Stereo,” Proc. IEEE Int’l Conf. Computer Vision, pp. 1073-1080,
1998.

[11] S. Birchfield and C. Tomasi, “Multiway Cut for Stereo and Motion
with Slanted Surfaces,” Proc. Int’l Conf. Computer Vision, vol. 1,
pp. 489-495, 1999.

[12] Y. Boykov, O. Veksler, and R. Zabih, “Markov Random Fields
with Efficient Approximations,” Proc. Computer Vision and Pattern
Recognition, pp. 648-655, 1998.

[13] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy
Minimization via Graph Cuts,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001.

[14] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for Energy Minimization in
Vision,” Proc. Third Int’l Workshop Energy Minimization Methods
in Computer Vision and Pattern Recognition, 2001.

[15] C. Chang, S. Chatterjee, and P.R. Kube, “On an Analysis of Static
Occlusion in Stereo Vision,” Proc. Computer Vision and Pattern
Recognition, pp. 722-723, 1991.

[16] W.-S. Ching, “A New Method of Identifying Occlusion and
Specular Highlights Using Active Vision,” Proc. Int’l Symp. Speech,
Image Processing and Neural Networks, pp. 437-440, 1994.

[17] S.D. Cochran and G. Medioni, “3-D Surface Description from
Binocular Stereo,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 14, no. 10, pp. 981-994, Oct. 1992.

[18] P. Corke and P. Dunn, “Real-Time Stereopsis Using FPGAs,” Proc.
IEEE TENCON—Speech and Image Technologies for Computing and
Telecommunications, pp. 235-238, 1997.

[19] I.J. Cox, S.L. Hingorani, S.B. Rao, and B.M. Maggs, “A Maximum
Likelihood Stereo Algorithm,” Computer Vision and Image Under-
standing, vol. 63, pp. 542-567, 1996.

[20] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. New York: McGraw-Hill, 1990.

[21] J.D. Crisman and J.A. Webb, “The Warp Machine on Navlab,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 5,
pp. 451-465, May 1991.

[22] T. Darrell, G. Gordon, M. Harville, and J. Woodfill, “Integrated
Person Tracking Using Stereo, Color, and Pattern Detection,” Proc.
Computer Vision and Pattern Recognition, pp. 601-608, 1998.

[23] U.R. Dhond and J.K. Aggarwal, “Structure from Stereo—A
Review,” IEEE Trans. Systems, Man, and Cybernetics, vol. 19,
pp. 1489-1510, 1989.

[24] U.R. Dhond and J.K. Aggarwal, “Analysis of the Stereo Corre-
spondence Process in Scenes with Narrow Occluding Objects,”
Proc. Int’l Conf. Pattern Recognition, vol. 1, pp. 470-473, 1992.

[25] G. Egnal and R.P. Wildes, “Detecting Binocular Half-Occlusions:
Empirical Comparisons of Four Approaches,” Proc. Computer
Vision and Pattern Recognition, vol. 2, pp. 466-473, 2000.

[26] O. Faugeras, B. Hotz, H. Matthieu, T. Vieville, Z. Zhang, P. Fua, E.
Theron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy,
“Real Time Correlation-Based Stereo: Algorithm, Implementations
and Applications,” INRIA Technical Report 2013, 1993.

[27] O. Faugeras and R. Keriven, “Variational Principles, Surface
Evolution, PDE’s, Level Set Methods, and the Stereo Problem,”
IEEE Trans. Image Processing, vol. 7, pp. 336-344, 1998.

[28] O. Faugeras and Q.-T. Luong, The Geometry of Multiple Images.
Cambridge, Mass.: The MIT Press, 2001.

[29] P. Fua, “A Parallel Stereo Algorithm that Produces Dense Depth
Maps and Preserves Image Features,” Machine Vision and Applica-
tions, vol. 6, pp. 35-49, 1993.

[30] P. Fua and Y.G. Leclerc, “Object-Centered Surface Reconstruction:
Combining Multi-Image Stereo and Shading,” Int’l J. Computer
Vision, vol. 16, pp. 35-56, 1995.

[31] A. Fusiello, V. Roberto, and E. Trucco, “Efficient Stereo with
Multiple Windowing,” Proc. Computer Vision and Pattern Recogni-
tion, pp. 858-863, 1997.

[32] A. Gruen, “Adaptive Least Squares Correlation: A Powerful
Image Matching Technique,” South African J. Photogrammetry,
Remote Sensing and Cartography, vol. 3, no. 14, pp. 175-187, 1985.

[33] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge: UK, Cambridge Univ. Press, 2000.

[34] W. Hoff and N. Ahuja, “Surfaces from Stereo: Integrating Feature
Matching, Disparity Estimation, and Contour Detection,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 2,
pp. 121-136, 1989.

[35] B.K.P. Horn and B.G. Schunk, “Determining Optical Flow,”
Artificial Intelligence, vol. 17, pp. 185-204, 1981.

[36] S.S. Intille and A.F. Bobick, “Incorporating Intensity Edges in the
Recovery of Occlusion Regions,” Proc. Int’l Conf. Pattern Recogni-
tion, vol. 1, pp. 674-677, 1994.

[37] M. Irani, B. Rousso, and S. Peleg, “Computing Occluding and
Transparent Motions,” Int’l J. Computer Vision, vol. 12, pp. 5-16,
1994.

[38] T. Kanade, M. Okutomi, and T. Nakahara, “A Multiple-Baseline
Stereo Method,” Proc. ARPA Image Understanding Workshop,
pp. 409-426, 1992.

[39] T. Kanade and M. Okutomi, “A Stereo Matching Algorithm with
an Adaptive Window: Theory and Experiment,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 16, Sept. 1994.

[40] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A
Stereo Method for Video-Rate Dense Depth Mapping and Its New
Applications,” Proc. Computer Vision and Pattern Recognition, 1996.

[41] S. Kimura, T. Kanade, H. Kano, A. Yoshida, E. Kawamura, and K.
Oda, “CMU Video-Rate Stereo Machine,” Proc. Mobile Mapping
Symp. 1995.

[42] S. Kimura, T. Shinbo, H. Yamaguchi, E. Kawamura, and K. Naka,
“A Convolver-Based Real-Time Stereo Machine (SAZAN),” Proc.
Computer Vision and Pattern Recognition, vol. 1, pp. 457-463, 1999.

[43] R. Klette, K. Schluns, and A. Koschan, Computer Vision—Three-
Dimensional Data from Images. Singapore: Springer, 1998.

[44] V.S. Kluth, G.W. Kunkel, and U.A. Rauhala, “Global Least Squares
Matching,” Proc. Int’l Geoscience and Remote Sensing Symp., vol. 2,
pp. 1615-1618, 1992.

[45] V. Kolmogorov and R. Zabih, “Computing Visual Correspon-
dence with Occlusions Using Graph Cuts,” Proc. Int’l Conf.
Computer Vision, 2001.

[46] K. Konolige, “Small Vision Systems: Hardware and Implementa-
tion,” Proc. Eighth Int’l Symp. Robotics Research, 1997.

[47] A. Koschan, “What is New in Computational Stereo Since 1989: A
Survey of Current Stereo Papers,” Technical Report 93-22,
Technical Univ. of Berlin, 1993.

[48] K.N. Kutulakos and S.M. Seitz, “A Theory of Shape by Space
Carving,” Int’l J. Computer Vision, vol. 38, no. 3, pp. 199-218, 2000.

[49] Z.-N. Li and H.W. Chin, “Depth and Occlusion Recovery in
Motion Stereo,” Proc. IEEE Int’l Conf. Systems, Man and Cybernetics,
vol. 5, pp. 3890-3895, 1995.

[50] J.J. Little and W. E. Gillett, “Direct Evidence for Occlusion in
Stereo and Motion,” Image and Vision Computing, vol. 8, no. 4,
pp. 328-340, 1990.

[51] B.D. Lucas and T. Kanade, “An Iterative Image Registration
Technique with an Application to Stereo Vision,” Proc. Int’l Joint
Conf. Artificial Intelligence, pp. 674-679, 1981.

[52] A.-R. Mansouri, A. Mitiche, and J. Konrad, “Selective Image
Diffusion: Application to Disparity Estimation,” Proc. Int’l Conf.
Image Processing, vol. 3, pp. 284-288, 1998.

[53] H. Mathieu, “A Multi-DSP 96002 Board,” INRIA Technical Report
153, 1993.

[54] L. Matthies, “Stereo Vision for Planetary Rovers: Stochastic
Modeling to Near Real-Time Implementation,” Int’l J. Computer
Vision, vol. 8, no. 1, pp. 71-91, 1992.

[55] L. Matthies, A. Kelly, T. Litwin, and G. Tharp, “Obstacle Detection
for Unmanned Ground Vehicles: A Progress Report,” Proc.
Intelligent Vehicles ’95 Symp., pp. 66-71, 1995.

[56] M.J. McDonnell, “Box-Filtering Techniques,” Computer Graphics
and Image Processing, vol. 17, pp. 65-70, 1981.

[57] K. Muhlmann, D. Maier, J. Hesser, and R. Manner, “Calculating
Dense Disparity Maps from Color Stereo Images, an Efficient
Implementation,” Proc. IEEE Workshop Stereo and Multi-Baseline
Vision, pp. 30-36, 2001.

[58] Y. Nakamura, T. Matsuura, K. Satoh, and Y. Ohta, “Occlusion
Detectable Stereo—Occlusion Patterns in Camera Matrix,” Proc.
Computer Vision and Pattern Recognition, pp. 371-378, 1996.

BROWN ET AL.: ADVANCES IN COMPUTATIONAL STEREO 1007



[59] H.K. Nishihara, “Real-Time Stereo- and Motion-Based Figure-
Ground Discrimination and Tracking Using LOG Sign-Correla-
tion,” Proc. 27th Asilomar Conf. Signals, Systems, and Computers,
pp. 95-100, 1993.

[60] Y. Ohta and T. Kanade, “Stereo by Intra- and Intra-Scanline Search
Using Dynamic Programming,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 7 pp. 139-154, 1985.

[61] M. Pilon and P. Cohen, “Occlusion Detection and Interpretation
Based on Image Reprojection,” Proc. S.W. Symp. Image Analysis and
Interpretation, pp. 166-171, 1996.

[62] S. Randriamasy and A. Gagalowicz, “Region Based Stereo
Matching Oriented Image Processing,” Proc. Computer Vision and
Pattern Recognition, pp. 736-737, 1991.

[63] U.A. Rauhala, “Introduction to Array Algebra,” Photogrammetric
Engineering and Remote Sensing, vol. 46, no. 2, pp. 177-192, 1980.

[64] M.K. Reed and P.K. Allen, “Constraint-Based Sensor Planning for
Scene Modeling,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, pp. 1460-1467, 2000.

[65] S. Roy and I.J. Cox, “A Maximum-Flow Formulation of the N-
Camera Stereo Correspondence Problem,” Proc. Int’l Conf.
Computer Vision, pp. 492-499, 1998.

[66] R. Sara and R. Bajcsy, “On Occluding Contour Artifacts in Stereo
Vision,” Proc. Computer Vision and Pattern Recognition, pp. 852-857,
1997.

[67] K. Satoh and Y. Ohta, “Occlusion Detectable Stereo—Systematic
Comparison of Detection Algorithms,” Proc. Int’l Conf. Pattern
Recognition, pp. 280-286, 1996.

[68] D. Scharstein and R. Szeliski, “Stereo Matching with Non-Linear
Diffusion,” Int’l J. Computer Vision, vol. 28, no. 2, pp. 155-174, 1998.

[69] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of
Dense Two-Frame Stereo Correspondence Algorithms,” Int’l J.
Computer Vision, vol. 47, no. 1, pp. 7-42, 2002.

[70] S. Scherer, P. Werth, and A. Pinz, “The Discriminatory Power of
Ordinal Measures—Towards a New Coefficient,” Proc. Computer
Vision and Pattern Recognition, vol. 1, pp. 76-81, 1999.

[71] J. Shah, “A Nonlinear Diffusion Model for Discontinuous
Disparity and Half-Occlusions in Stereo,” Proc. Computer Vision
and Pattern Recognition, pp. 34-40, 1993.

[72] C. Schmid and A. Zisserman, “The Geometry and Matching of
Curves in Multiple Views,” Proc. European Conf. Computer Vision,
pp. 104-118, 1998.

[73] J. Shi and C. Tomasi, “Good Features to Track,” Proc. Computer
Vision and Pattern Recognition, pp. 593-600, 1994.

[74] C. Silva and J. Santos-Victor, “Intrinsic Images for Dense Stereo
Matching with Occlusions,” Proc. European Conf. Computer Vision,
pp. 100-114, 2000.

[75] C.V. Stewart, “Bias in Robust Estimation Caused by Discontin-
uous and Multiple Structures,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 19, no. 8, pp. 818-833, Aug. 1997.

[76] C. Sun, “A Fast Stereo Matching Method,” Proc. Digital Image
Computing: Techniques and Applications, pp. 95-100, 1997.

[77] J. Sun, H.-Y. Shum, and N.-N. Zheng, “Stereo Matching Using
Belief Propagation,” Proc. European Conf. Computer Vision, pp. 510-
524, 2002.

[78] K.A. Tarabanis, P.K. Allen, and R.Y. Tsai, “A Survey of Sensor
Planning in Computer Vision,” IEEE Trans. Robotics and Automa-
tion, vol. 11, no. 1, pp. 86-104, 1995.

[79] I. Thomos, S. Malasiotis, and M.G. Strintzis, “Optimized Block
Based Disparity Estimation in Stereo Systems Using a Maximum-
Flow Approach,” Proc. SIBGRAPI ’98 Conf., 1998.

[80] C. Tomasi and R. Manduchi, “Stereo without Search,” Technical
Report STAN-CS-TR-95-1543, Stanford Univ., 1995.

[81] C. Tomasi and R. Manduchi, “Stereo Matching as a Nearest-
Neighbor Problem,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 20, pp. 333-340, 1998.

[82] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer
Vision. N.J.: Prentice Hall, 1998.

[83] C.-J. Tsai and A.K. Katsaggelos, “Dense Disparity Estimation with
a Divide-and-Conquer Disparity Space Image Technique,” IEEE
Trans. Multimedia, vol. 1, pp. 18-28, 1999.

[84] V. Venkateswar and R. Chellappa, “Hierarchical Stereo and
Motion Correspondence Using Feature Groupings,” Int’l J.
Computer Vision, vol. 15, pp. 245-269, 1995.

[85] J.A. Webb, “Implementation and Performance of Fast Parallel
Multi-Baseline Stereo Vision,” Proc. DARPA Image Understanding
Workshop, pp. 1005-1012, 1993.

[86] R. Wildes, “Direct Recovery of Three-Dimensional Scene Geome-
try from Binocular Stereo Disparity,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 13, no. 8 pp. 761-774, Aug. 1991.

[87] J. Woodfill and B. Von Herzen, “Real-Time Stereo Vision on the
PARTS Reconfigurable Computer,” Proc. IEEE Workshop FPGAs for
Custom Computing Machines, pp. 242-250, 1997.

[88] A.L. Yuille and T. Poggio, “A Generalized Ordering Constraint for
Stereo Correspondence,” A.I. Laboratory Memo 777, MIT, Cam-
bridge, Mass., 1984.

[89] R. Zabih and J. Woodfill, “Non-Parametric Local Transforms for
Computing Visual Correspondence,” Proc. Third European Conf.
Computer Vision, pp. 150-158, 1994.

[90] C. L. Zitnick and T. Kanade, “A Cooperative Algorithm for Stereo
Matching and Occlusion Detection,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 22, no. 7, July 2000.

[91] Z. Zhang, “Determining the Epipolar Geometry and Its Un-
certainty: A Review,” INRIA Technical Report 2927, 1996.

[92] H. Zhao, “Global Optimal Surface from Stereo,” Proc. Int’l Conf.
Pattern Recognition, vol. 1, pp. 101-104, 2000.

Myron Z. Brown received the BS degree in
computer science from West Virginia Institute of
Technology in 1996 and the MS degree in
electrical engineering from the Johns Hopkins
University in 2000. From 1996 to 1999, he was an
engineer at Northrop Grumman, where he
worked on automatic target recognition technol-
ogy. He is currently a senior research engineer at
the Johns Hopkins University Applied Physics
Laboratory, where his research focuses on

image and video exploitation, stereo cartography, terrain-aided naviga-
tion and targeting. Mr. Brown has been a member of the IEEE since 2000.

Darius Burschka received the PhD degree in
electrical and computer engineering in 1998 from
the Technische Universität München, performing
research on vision-based navigation and map
generation with binocular stereo systems. In
1999, he was a postdoctoral associate at Yale
University, New Haven, Connecticut, where he
worked on laser-based map generation and
landmark selection from video images for
vision-based navigation systems. Since 1999,

he has been an associate research scientist at the Johns Hopkins
University, Baltimore, Maryland. His areas of research are sensor
systems for mobile robots and human computer interfaces. The focus of
his research is vision-based navigation and three-dimensional recon-
struction from sensor data. Dr. Burschka has been a member of IEEE
since 1999.

Gregory D. Hager received the BA degree,
summa cum laude, in computer science and
mathematics from Luther College in 1983, and
the MS and PhD degrees in computer science
from the University of Pennsylvania in 1985 and
1988, respectively. From 1988 to 1990, he was a
Fulbright junior research fellow at the University
of Karlsruhe and the Fraunhofer Institute IITB in
Karlsruhe, Germany. From 1991 until 1999, he
was with the Computer Science Department at

Yale University. In 1999, he joined the Computer Science Department at
Johns Hopkins University, where he is now a full professor and a faculty
member in the Center for Computer Integrated Surgical Systems and
Technology. Professor Hager has authored more than 100 research
articles and books in the area of robotics and computer vision. His
current research interests include visual tracking, vision-based control,
medical robotics, and human-computer interaction. He is senior member
of the IEEE and a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

1008 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


