Assignment 4: Object Classification

Input

Also: Lotus, panda, pizza, pyramid, snoopy, yin-yang

Your Task:

What am I?

10 categories, 10x10 train images, 10x20 test images

Results

Train

Detect Features

Compute Descriptors

Random Harris Sift Etc. Window Sift Etc.

should be familiar by now...

Train

kmeans

Descriptors

API Tips

[IDX, C] = kmeans(X, k)

[...] = kmeans(..., param1, val1, param2, val2, ...)

<pre> 'enptyaction' </pre>	Action to take if a cluster loses all its member observations.	
	'error'	Treat an empty cluster as an error (default).
	'drop'	Remove any clusters that become empty. kmeans sets the corresponding return values in C and D to NaN.
	`singleton'	Create a new cluster consisting of the one point furthest from its centroid.

Classify

Naive Bayes

$$p(C_{i}|p_{1}, p_{2}, ...) = p(p_{1}, p_{2}, ...|C_{i}) \frac{p(C_{i})}{p(p_{1}, p_{2}, ...)}$$
(1)

$$\propto p(p_{1}, p_{2}, ...|C_{i})$$
(2)

$$= \prod_{j} p(p_{j}|C_{i})$$
(3)

(1) - Bayes formula
 (2) - Assume equal class priors, don't care about normalization.
 (3) - Assume independent descriptors

Naive Bayes

$$p(C_i|p_1, p_2, \ldots) \propto \prod_j p(p_j|C_i)$$

Estimated class: arg ma

$$\arg\max_i \prod_j p(p_j|C_i)$$

(using the fact that $p(p_j|C_i) \propto \operatorname{count}(p_j \in \operatorname{training}(C_i))$)

2 more practical modifications...

Naive Bayes

Prevent zero counts

$$p(p_j|C_i) \propto \operatorname{count}(p_j \in training(C_i))$$

 $p(p_j|C_i) \propto 1 + \operatorname{count}(p_j \in training(C_i))$

Prevent overflow

Estimated class:
$$\arg\max_{i} \sum_{j} log(1 + count(p_{j} \in training(C_{i})))$$