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Object detection 

Given an image, find all instances of a basic 

object category (e.g., car, face, etc.) 
• Report the object locations (e.g., bounding boxes)  

or report that there is none 



Goal: single method, many object classes 



Car/non-car 

Classifier 

Feature 

extraction 

Training examples 

Training: 

1. Obtain training data 

2. Define features 

3. Define classifier 

 

Given new image: 

1. Slide window 

2. Score by classifier 

Kristen Grauman 

Last time: sliding window detection 



Last time: Viola & Jones 

Faces 

Non-faces 

Train cascade of 

classifiers with 

AdaBoost 

Selected features, thresholds, 

and weights 

New image 

Kristen Grauman 



Slides by Pete Barnum 

Dalal & Triggs 

Similar in concept to Viola & Jones,  

but different features (HOG),  

different classifier (SVM), 

and better results 



Dalal & Triggs 

1) Decompose window into blocks 
 

 

 



Dalal & Triggs 

1) Decompose window into blocks 

2) Compute block features 

  

 

 Histogram of oriented gradients         
                  (HOG) 

 

 

 

 

 



Dalal & Triggs 

1) Decompose window into blocks 

2) Compute block features 

3) Classify with linear SVM 

  

  



Dalal & Triggs 

1) Decompose window into blocks 

2) Compute block features 

3) Classify with linear SVM 

4) Extract bounding boxes 
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Dalal & Triggs 

Detection Examples 

Weighted pos wts Weighted neg wts Average gradients 

Dominant pos 
orientations 

Dominant neg 
orientations 

Input window 

Dalal & Triggs 2005 



Are we done? 



Are we done? 

Single, rigid template usually not enough to 

represent a category 

• Many objects (e.g. humans) are articulated, or 

have parts that can vary in configuration 

 

  

 

 
 

• Many object categories look very different from 

different viewpoints, or from instance to instance 

 



Deformable objects 

Images from D. Ramanan‟s dataset 
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Non-rigid objects 

Images from Caltech-256 
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Deformable object representation? 



Part-based Models 

Objects are represented by features of parts 

and spatial relations between parts 

  

17 Face model by Fischler and Elschlager „73 



Generative part-based models 

Training problem: find the most salient part 

structures from examples 

R. Fergus, P. Perona and A. Zisserman,  

Object Class Recognition by Unsupervised Scale-Invariant Learning, CVPR 2003 

http://cs.nyu.edu/~fergus/papers/fergus03.pdf
http://cs.nyu.edu/~fergus/papers/fergus03.pdf
http://cs.nyu.edu/~fergus/papers/fergus03.pdf
http://cs.nyu.edu/~fergus/papers/fergus03.pdf


Generative part-based models 

Recognition problem: find the most probable 

part layout l1, …, ln  in new image 

 

Part 2 

Part 3 

Part 1 

R. Fergus, P. Perona and A. Zisserman,  

Object Class Recognition by Unsupervised Scale-Invariant Learning, CVPR 2003 

http://cs.nyu.edu/~fergus/papers/fergus03.pdf
http://cs.nyu.edu/~fergus/papers/fergus03.pdf
http://cs.nyu.edu/~fergus/papers/fergus03.pdf
http://cs.nyu.edu/~fergus/papers/fergus03.pdf


Generative part-based models 

h: assignment of features to parts 
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Part 

locations 
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Generative part-based models 

h: assignment of features to parts 
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Generative part-based models 

L: assignment of features to parts 

Part 2 

Part 3 

Part 1 
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Generative part-based models 

High-dimensional appearance space 

Distribution  

over patch 

descriptors 
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Generative part-based models 

2D image space 

Distribution  

over joint 

part positions 
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Generative part-based models 

Energy-based formulation for detection: 

 

 

 

 

mi(li): matching cost for part I 

dij(li,lj): deformation cost for connected parts  

(vi,vj): connection between part i and j 
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Felzenszwalb & 

Huttenlocher „00 

O(N6) O(N2) O(N3) 

O(N2) 

Fergus et al. ‟03 

Fei-Fei et al. „03 

Crandall et al. „05 

Fergus et al. ‟05 
Crandall et al. „05 

Bouchard & Triggs „05 Carneiro & Lowe „06 Csurka ‟04 

Vasconcelos „00 

Sparse Flexible Models of Local Features 

Gustavo Carneiro and David Lowe, ECCV 2006 

Generative part-based models 

Complexity of finding minimal energy  

depends on topology of part model 



Generative part-based models 
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Tree-structured models can solved optimally in 

O(N2) with dynamic programming 

 



Generative part-based models 

Sample result on matching human 

 



Generative part-based models 

Sample result on matching human 
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Generative part-based models 

Sample result on matching human 
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Discriminative  

Part-based Models 

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection 

with Discriminatively Trained Part Based Models, PAMI 32(9), 2010 

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf
http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Descriminative part-based models 

Represent object as feature vector representing 
• Appearance of root and parts 

• Spatial relationships between root and parts 
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Discriminative part-based models 

At detection time, consider object hypotheses 

(windows) at multiple shifts and scales 

Root 

filter 
Part 

filters 
Deformation 

weights 



Scoring an object hypothesis 

The score of a hypothesis is the sum of filter scores 

minus the sum of deformation costs 
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Scoring an object hypothesis 

The score of a hypothesis is the sum of filter scores 

minus the sum of deformation costs 

)()( zHwzscore 

Concatenation of filter 

and deformation 

weights  

Concatenation of 

subwindow features 

and displacements 
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Subwindow 

features 
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Detection 

Define the score of each root filter location as the score 

given the best part placements: 
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Detection 

Define the score of each root filter location as the score 

given the best part placements: 

 

 

• Efficient computation: generalized distance transforms 

• For each “default” part location, find the score of the 

“best” displacement 
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Detection 

Define the score of each root filter location as the score 

given the best part placements: 

 

 

• Efficient computation: generalized distance transforms 

• For each “default” part location, find the score of the 

“best” displacement 
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Head filter responses Distance transform 
Head filter 



Detection 



Discriminative part-based models 



Training 

• Training data consists of labeled bounding boxes 

• Need to learn the filters and deformation parameters 



Training 

• Classifier has the form 

 

 

 

• w are model parameters, z are latent hypotheses 

 

• Latent SVM training: 

• Initialize w and iterate: 

• Fix w and find the best z for each training example (detection) 

• Fix z and solve for w (standard SVM training) 
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Car model 

Component 1 

Component 2 



Car detections 



Person model 



Person detections 



Cat model 



Cat detections 



Bottle model 



More detections 



Implicit Shape Models 

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit 

Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004 

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Implicit shape models 

• Visual codebook is used to index votes for 

object position 

training image annotated with object localization info 

visual codeword with 

displacement vectors 



Implicit shape models 

• Visual codebook is used to index votes for 

object position 

test image 



Visual codebook? 

Mapping of image patches to  

discrete set of “visual words” 

 



Visual codebook? 

Candidate patches Candidate patches 



Normalize 

patch 

Candidate patches 

Compute 

descriptor 

Slide credit: Josef Sivic 

Visual codebook? 



… 

Slide credit: Josef Sivic 

Visual codebook? 



… 

Slide credit: Josef Sivic 

Visual codebook? 

Feature space 



Clustering 

… 

Slide credit: Josef Sivic 

Visual codebook? 



Visual codebook? 

Clustering 

… 

Slide credit: Josef Sivic 

Visual codebook 



Implicit shape models: Training 

1. Build codebook of patches around extracted 

interest points using clustering 



Implicit shape models: Training 

1. Build codebook of patches around extracted 

interest points using clustering 

2. Map the patch around each interest point to 

closest codebook entry 

 



Implicit shape models: Training 

1. Build codebook of patches around extracted 

interest points using clustering 

2. Map the patch around each interest point to 

closest codebook entry 

3. For each codebook entry, store all positions 

it was found, relative to object center 

 



Implicit shape models: Testing 

1. Given test image, extract patches, match to 

codebook entry  

2. Cast votes for possible positions of object center 

3. Search for maxima in voting space 

4. Extract weighted segmentation mask based on 

stored masks for the codebook occurrences 



Source: B. Leibe 

Original image 

Example: Results on Cows 



Interest points 

Example: Results on Cows 

Source: B. Leibe 



Example: Results on Cows 

Matched patches 
Source: B. Leibe 



Example: Results on Cows 

Probabilistic votes 
Source: B. Leibe 



Example: Results on Cows 

Hypothesis 1 
Source: B. Leibe 



Example: Results on Cows 

Hypothesis 2 
Source: B. Leibe 



Example: Results on Cows 

Hypothesis 3 
Source: B. Leibe 



Additional examples 

B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved 

Categorization and Segmentation, IJCV 77 (1-3), pp. 259-289, 2008. 

http://www.mmp.rwth-aachen.de/publications/pdf/leibe-interleaved-ijcv07final.pdf
http://www.mmp.rwth-aachen.de/publications/pdf/leibe-interleaved-ijcv07final.pdf


Example detections 

[Dalal and Triggs, CVPR 2005] 



Summary 

Part-based models 

 

 Offer flexibility in comparison to rigid 

sliding windows 

 

 Can be integrated with discriminative 

classifiers 

 

 Provide good results for many object 

detection tasks 





Another Application of ISM 

Protein function prediction 

Protein 

Structure 

Prediction of 

Bound Ligand 

X-site, Laskowski 1996 



Binding Site Modeling 

Train on distributions of ligand atoms relative to 

residues in bound proteins to develop 

predictive model for new binding sites 

Training Protein 



Binding Site Modeling 

Train on distributions of ligand atoms relative to 

residues in bound proteins to develop 

predictive model for new binding sites 

Training Protein 

Amino Acid 

Coordinate Frame 



Binding Site Modeling 
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Binding Site Modeling 

Train on distributions of ligand atoms relative to 

residues in bound proteins to develop 

predictive model for new binding sites 
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Binding Site Modeling 

Train on distributions of ligand atoms relative to 

residues in bound proteins to develop 

predictive model for new binding sites 

Training Protein 

Amino Acid 

Coordinate Frame 



Binding Site Modeling 

Train on distributions of ligand atoms relative to 

residues in bound proteins to develop 

predictive model for new binding sites 

Training Protein 

Trained 

Density 

Distribution 



Binding Site Modeling 

Train on distributions of ligand atoms relative to 

residues in bound proteins to develop 

predictive model for new binding sites 

New Protein 



Binding Site Modeling 

Train on distributions of ligand atoms relative to 

residues in bound proteins to develop 

predictive model for new binding sites 

New Protein 

Amino 

Acid 

Coordinate 

Frame 



Binding Site Modeling 

Train on distributions of ligand atoms relative to 

residues in bound proteins to develop 

predictive model for new binding sites 

New Protein 

Trained 

Density 

Distribution 

Splatted 

Density 

Distribution 

For One  

Amino Acid 



Binding Site Modeling 

Train on distributions of ligand atoms relative to 

residues in bound proteins to develop 

predictive model for new binding sites 

New Protein New Protein 

Predicted 

Density 

Distribution 

Trained 

Density 

Distribution 



Binding Site Modeling 

1mxb-1-A-ADP-385-_ 4pfk-1-A-ADP-326-_ 

Residue Coordinate Frames 



Binding Site Modeling 

Trained  

Density Distributions  

for Argenine 

C N 

O P 



Binding Site Modeling 

Predicted 

Binding Site 

Model for  

1kp8-1-H-ATP-1-_ 



Binding Site Modeling 

Predicted 

Binding Site 

Model for  

1kp8-1-H-ATP-1-_ 



Binding Site Modeling 

Predicted 

Binding Site 

Model for  

1kp8-1-H-ATP-1-_ 



Binding Site Modeling 

C N 

O P 

Predicted 

Binding Site 

Model for  

1kp8-1-H-ATP-1-_ 




