

Shape Analysis

COS 429

Princeton University

Motivation

Large repositories of 3D data are available

Computer Graphics

Mechanical CAD

Anthropometry

Medicine

Cultural Heritage

Site Monitoring

Problem

Most 3D data lacks structural and functional annotations

Goal

Infer structures and relationships automatically from 3D data (shape analysis)

Chymotrypsin (mammalian serine protease)

- Molecular biology
- Paleontology
- Archaeology
- Urban planning
- Geometric modeling

- ➤Molecular biology
- Paleontology
- Archaeology
- Urban planning
- Geometric modeling

- Molecular biology
- Paleontology
- Archaeology
- Urban planning
- Geometric modeling

- Molecular biology
- Paleontology
- Archaeology
- Urban planning
- Geometric modeling

- Molecular biology
- Paleontology
- Archaeology
- ➢Urban planning
- Geometric modeling

Application domains:

- Molecular biology
- Paleontology
- Archaeology
- Urban planning

➤Geometric modeling

Research problems ...

- Detect features
- Find correspondences
- Detect symmetries
- Define distances
- Infer part structures
- Transfer properties
- Recognize objects
- Etc.

Research problems ...

- Detect features
- Find correspondences
- Detect symmetries
- Define distances
- Infer part structures
- Transfer properties
- Recognize objects
- Etc.

Schelling Points (Chen, in preparation)

Research problems ...

- Detect features
- Find correspondences
- Detect symmetries
- Define distances
- Infer part structures
- Transfer properties
- Recognize objects

• Etc.

Mobius Voting (Lipman, 2009)

Research problems ...

- Detect features
- Find correspondences
- Detect symmetries
- Define distances
- Infer part structures
- Transfer properties
- Recognize objects

• Etc.

Symmetry Factored Distance (Lipman, 2010)

Research problems ...

- Detect features
- Find correspondences
- Detect symmetries
- Define distances
- Infer part structures
- Transfer properties
- Recognize objects

• Etc.

Biharmonic Distance (Lipman, 2010)

Research problems ...

- Detect features
- Find correspondences
- Detect symmetries
- Define distances
- Infer part structures
- Transfer properties
- Recognize objects

• Etc.

Randomized Cuts (Golovinskiy 2008, Chen, 2009)

Research problems ...

- Detect features
- Find correspondences
- Detect symmetries
- Define distances
- Infer part structures
- Transfer properties
- Recognize objectsEtc.

MeshMatch (Chen, in preparation)

Research problems ...

- Detect features
- Find correspondences
- Detect symmetries
- Define distances
- Infer part structures
- Transfer properties
 Recognize objects

• Etc.

User-Driven Learning (Boyko, in preparation)

Goal: predictive model for salient 3D feature points

Goals:

- Invariant to transformations
- Robust to small surface deviations (holes, noise, etc.)
- Common across different surfaces in same class
- Salient

Salience: the quality or fact of being more prominent in a person's awareness or in his memory of past experience" [Oxford English Dictionary]

- Minimum curvature
- Gauss curvature [Lipman09]
- Multiscale persistence [Li07]
- Differences of curvature [Lee05]
- Shape descriptor likelihood [Chua96]
- Shape descriptor distinction [Shilane07]
- Heat Kernel Signature [Sun09]
- Average geodesic distance [Zhang08]
- Distance to convex hull [Katz05]
- Iterative furthest point
- etc.

Methods based on geometric surface properties ...

- Minimum curvature
- Gauss curvature [Lipman09]
- Multiscale persistence [Li07]
- Differences of curvature [Lee05]
- Shape descriptor likelihood [Chua96]
- Shape descriptor distinction [Shilane07]
- Heat Kernel Signature [Sun09]
- Average geodesic distance [Zhang08]
- Distance to convex hull [Katz05]
- Iterative furthest point
- etc.

Minimum Curvature

Maximum Curvature

- Minimum curvature
- Gauss curvature [Lipman09]
- Multiscale persistence [Li07]
- Differences of curvature [Lee05]
- Shape descriptor likelihood [Chua96]
- Shape descriptor distinction [Shilane07]
- Heat Kernel Signature [Sun09]
- Average geodesic distance [Zhang08]
- Distance to convex hull [Katz05]
- Iterative furthest point
- etc.

- Minimum curvature
- Gauss curvature [Lipman09]
- Multiscale persistence [Li07]
- Differences of curvature [Lee05]
- Shape descriptor likelihood [Chua96]
- Shape descriptor distinction [Shilane07]
- Heat Kernel Signature [Sun09]
- Average geodesic distance [Zhang08]
- Distance to convex hull [Katz05]
- Iterative furthest point
- etc.

Scale-Space Differences of Curvature

- Minimum curvature
- Gauss curvature [Lipman09]
- Multiscale persistence [Li07]
- Differences of curvature [Lee05]
- Shape descriptor likelihood [Chua96]
- Shape descriptor distinction [Shilane07]
- Heat Kernel Signature [Sun09]
- Average geodesic distance [Zhang08]
- Distance to convex hull [Katz05]
- Iterative furthest point
- etc.

- Minimum curvature
- Gauss curvature [Lipman09]
- Multiscale persistence [Li07]
- Differences of curvature [Lee05]
- Shape descriptor likelihood [Chua96]
- Shape descriptor distinction [Shilane0]
- Heat Kernel Signature [Sun09]
- Average geodesic distance [Zhang08]
- Distance to convex hull [Katz05]
- Iterative furthest point
- etc.

- Minimum curvature
- Gauss curvature [Lipman09]
- Multiscale persistence [Li07]
- Differences of curvature [Lee05]
- Shape descriptor likelihood [Chua96]
- Shape descriptor distinction [Shilane07]
- Heat Kernel Signature [Sun09]
- Average geodesic distance [Zhang08]
- Distance to convex hull [Katz05]
- Iterative furthest point
- etc.

- Minimum curvature
- Gauss curvature [Lipman09]
- Multiscale persistence [Li07]
- Differences of curvature [Lee05]
- Shape descriptor likelihood [Chua96]
- Shape descriptor distinction [Shilane07]
- Heat Kernel Signature [Sun09]
- Average geodesic distance [Zhang08]
- Distance to convex hull [Katz05]
- Iterative furthest point
- etc.

- Minimum curvature
- Gauss curvature [Lipman09]
- Multiscale persistence [Li07]
- Differences of curvature [Lee05]
- Shape descriptor likelihood [Chua96]
- Shape descriptor distinction [Shilane07
- Heat Kernel Signature [Sun09]
- Average geodesic distance [Zhang08]
- Distance to convex hull [Katz05]
- Iterative furthest point
- etc.

Learning Features From People

How should we ask people which points are salient?

• "Please select salient points"

How should we ask people which points are salient?

- "Please select salient points"
- "Please select a pattern of points from which another person can recognize the object's class by viewing only those points as they spin in 3D"

How should we ask people which points are salient?

- "Please select salient points"
- "Please select a pattern of points from which another person can recognize the object's class by viewing only those points as they spin in 3D"

We asked people to:

 "Please select points that you think other people will select"

Based on the "focal point" theory of Schelling [1960]

- Nash equilibrium solutions to a pure-coordination game
- "A solution that people will tend to use in the absence of communication, because it seems natural, special or relevant to them"

Example Schelling Experiments I

Write down any amount of money, imagining that if everyone writes down the same amount, then each receives that amount as a prize; otherwise nobody receives anything [Schelling60]
Example Schelling Experiments I

Write down any amount of money, imagining that if everyone writes down the same amount, then each receives that amount as a prize; otherwise nobody receives anything [Schelling60]

30% choose 1 million

93% choose 1, 10, 100, ..., 10^X

Example Schelling Experiments II

Select a time and place in New York City to meet someone without any prior communication [Schelling60]

Example Schelling Experiments II

Select a time and place in New York City to meet someone without any prior communication [Schelling60]

Grand Central Terminal at noon

Example Schelling Experiments III

Please pick the point in this image that you think is most likely to be picked by other people in the room

Example schelling Experiments III

Raise your hand if you selected the black point

Example schelling Experiments III

Raise your hand if you selected the red point

Schelling Points on 3D Surfaces

Use focal points to study salience on 3D surface meshes

Study Methodology

Data Collection on Mechanical Turk

Schelling Point Distributions

Descriptive Statistics

Study Methodology

Data Collection on Mechanical Turk

Schelling Point Distributions

Geometric

Analysis

Descriptive Statistics

46

SDF

84

30

18

18

Main Conclusions I

Small sets of points are indeed selected consistently

Main Conclusions II

Schelling points are not randomly distributed

Main Conclusions III

Local curvature features explain ~65% of Schelling points

Main Conclusions III

Global shape features explain ~20% of Schelling points

Main Conclusions III

~15% of Schelling points are not explained geometrically

Main Conclusions IV

Predictive models combining many geometric properties outperform ones based on any single property

```
%(Blur(MinCurv, 4) <= 65.56</pre>
    Symmetry > 35.669
        SDF > 0.528
            Symmetry <= 101.366
                 %(GeodesicTenPercentile) <= 44.399
            Symmetry > 101.366
                 ZNormal \leq 0.287
%(Blur(MinCurv4) > 65.56
    SegCenter <= 0.772
        %(MaxCurv) <= 37.769</pre>
            %(Saliency0.7) <= 89.877
                %(|Blur(MaxCurve)|,3) <= 33.576</pre>
            %(Saliency0.7) > 89.877
                 %(Blur(|MaxCurv|),3) <= 77.394</pre>
        %(MaxCurv) > 37.769
            %(SDF) <= 43.417
                 Blur(Symmetry, 4) <= 59.815
    SegCenter > 0.772
        MeanCurv > 5.973
            %(ZNormal) <= 92.829
                Blur(Symmetry, 4) \leq 63.682
```


Predicting schelling distribution

New Mesh

Collected Schelling Distributions

Regression Analysis

Predicted Salience

Predicting schelling distribution

Results

Ground Truth

Predicted

Applications

Mesh saliency:

- Simplification
- Segmentation
- View selection
- etc.

Feature points:

- Recognition
- Matching
- Morphing
- etc.

Simplification guided by saliency estimates

Surface Matching

Surface Matching

Goal: find map between surfaces

Surface Matching

Goal: find map between surfaces

- Non-rigid
- Bijective
- Smooth
- Shape preserving
- Automatic
- Efficient computation
- Provide metric
- Semantic alignment

Applications

Registration

Comparison

Property transfer

Morphing

etc.

Possible Approach

Find feature correspondences and solve for map that best aligns them

Suitable only for "low-dimensional" maps

Challenge

Many feature points are needed for most maps between surfaces

Least Squares Conformal Map (preserve angles as best as possible)

Problem

Automatically finding many correspondences is difficult for surfaces

Key Observation

Any three point correspondences define a bijective, conformal map between genus zero surfaces

We can search for the "lowest distortion" bijective, conformal map between genus zero surfaces using algorithms that sample triplets of correspondences (e.g., RANSAC, Hough transform, etc.)

> Polynomial-time algorithm for non-rigid surface mapping

Example: RANSAC algorithm

For i = 1 to $\sim N^3$

Sample three points (A1,A2,A3) on surface A Sample three points (B1,B2,B3) on surface B Compute conformal map M: (A1,A2,A3)→(B1,B2,B3) Remember M if distortion is smallest

Example: RANSAC algorithm

For i = 1 to
$$\sim N^3$$

Sample three points (A1,A2,A3) on surface A Sample three points (B1,B2,B3) on surface B Compute conformal map M: (A1,A2,A3)→(B1,B2,B3) Remember M if distortion is smallest

Measure distortion by relative change of area (deviation from isometry)

Example: RANSAC algorithm

For i = 1 to
$$\sim N^3$$

Sample three points (A1,A2,A3) on surface A Sample three points (B1,B2,B3) on surface B Compute conformal map M: (A1,A2,A3)→(B1,B2,B3) Remember M if distortion is smallest

Measure distortion by relative change of area (deviation from isometry)

RANSAC algorithm properties:

- Non-rigid
- Bijective
- Smooth
- Shape preserving
- Automatic
- Efficient computation
- Provides metric
- Semantic alignment?

Experimental Results

Data:

 51 pairs of meshes representing animals from TOSCA and SHREC Watertight data sets

Methodology:

- Predict surface maps
- Compare to ground truth semantic correspondences

Experimental Results

Evaluation:

- For every point with a ground truth correspondence, measure geodesic distance between predicted correspondence and ground truth correspondence
- 2. Plot fraction of points within geodesic error threshold

Experimental Results

Results:

Application

Automatically quantify the geometric similarity of anatomical surfaces

[Boyer, Lipman, St. Clair, Puente, Patel, Funkhouser, Jernvall, and Daubechies, 2011]

Application

Traditional Procrustes distance:

$$d(X,Y) = min_R\left[\left(\sum_{i=1}^N ||R(X_i) - Y_i||^2\right)^{1/2}\right]$$

Human Specified Landmarks

 $\mathbf{Y} = \{ \mathbf{Y}_{\mathbf{i}} \}$

 $\mathbf{X} = \{ \mathbf{X}_i \}$
New continuous Procrustes distance:

$$d(A,B) = min_{R,M}\left[\left(\int_A \|R(x) - M(x)\|^2 dx\right)^{1/2}\right]$$

Embedding based on new distance

Clustering based on new distance

Species Groups of Galaga Genus

Classification based on nearest-neighbors

Mandibular Molar	# Groups	# Objects	New Distance	Human Landmarks
Genus	24	99	90.9%	91.9%
Family	17	106	92.5%	94.3%
Order	5	116	94.8%	95.7%

First Metatarsal	# Groups	# Objects	New Distance	Human1 Landmarks	Human2 Landmarks
Genus	13	59	79.9%	76.3%	88.1%
Family	9	61	91.8%	83.6%	93.4%
Superfamily	2	61	100%	100%	100%

Distal	#	# Objects	New	Human
Radius	Groups		Distance	Landmarks
Genus	4	45	84.4%	77.7%

Propagating correspondences

Reconstruction

Computer-Assisted Reconstruction

1) Scan digital representations of fragments

Computer-Assisted Reconstruction

2) Reconstruct frescoes with computer algorithms

Scanned Fragments

Reconstructed Fresco

Computer-Assisted Reconstruction

Focus of This Talk

Goal: Develop a scoring method that accurately estimates the probability that a candidate match is correct

Previous Methods

Most prior systems scored matches using functions combining a few match properties with weights

• McBride et al., 2003

$$\lambda_1 \cdot C_{\text{distance}} + \lambda_2 \cdot \sqrt{C_{\text{length}}} + \lambda_3 \cdot \sqrt{C_{\text{diagnostic}}}$$

• Brown et al., 2008 (Ribbonmatcher Error) $\lambda_1 \cdot C_{\text{WindowRMSD}} + \lambda_2 \cdot C_{\text{Thickness}}$

Our Approach

Machine learning

- User provides example correct and incorrect matches
- System learns classifier to predict correctness of new candidate matches based on their properties

Candidate match

Measure compatibility of fragments

Measure compatibility of fragments ≻∆Thickness = 0.1 mm

- ΔThickness = 0.1 mm
- $\circ \Delta Color = 0.002$
- ≻∆Alignment = 0.24 mm

- ΔThickness = 0.1 mm
- $\circ \Delta Color = 0.002$
- $\circ \Delta Alignment = 0.24 mm$
- $> \Delta Curvature = 0.06 \text{ mm}^{-1}$

- ΔThickness = 0.1 mm
- $\circ \Delta Color = 0.002$
- ΔAlignment = 0.24 mm
- $\Delta Curvature = 0.06 \text{ mm}^{-1}$
- ≻Length = 43.6 mm
- Overlap = 0.7 mm
- \circ Min int. angle = 88 $^\circ$
- \circ Max ext. angle = 191 $^{\circ}$
- Etc.

- ΔThickness = 0.1 mm
- $\circ \Delta Color = 0.002$
- $\circ \Delta Alignment = 0.24 mm$
- $\Delta Curvature = 0.06 \text{ mm}^{-1}$
- Length = 43.6 mm
- ≻Overlap = 0.7 mm
- \circ Min int. angle = 88 $^\circ$
- \circ Max ext. angle = 191 $^{\circ}$
- Etc.

- ΔThickness = 0.1 mm
- $\circ \Delta Color = 0.002$
- ΔAlignment = 0.24 mm
- $\Delta Curvature = 0.06 \text{ mm}^{-1}$
- Length = 43.6 mm
- Overlap = 0.7 mm
- ≻Min int. angle = 88 °
- \circ Max ext. angle = 191 $^{\circ}$
- Etc.

- ΔThickness = 0.1 mm
- $\circ \Delta Color = 0.002$
- ΔAlignment = 0.24 mm
- $\Delta Curvature = 0.06 \text{ mm}^{-1}$
- Length = 43.6 mm
- Overlap = 0.7 mm
- \circ Min int. angle = 88 $^\circ$
- ➤Max ext. angle = 191 °
- Etc.

In all, 64 properties per match

ContourContactLength	$0.5 \cdot (CR_0 + CR_1)$
ContourContactDensity	$0.5 \cdot (CC_0 / CR_0 + CC_1 / CR_1)$
ContourContactRMSD	$\sqrt{\sum_{i,i} (C_{i,i}[j] - C_{i,1-i}[j])^2}$, where
	$\{C_{i,i}[j], C_{i,1-i}[j]\} \in CC_i, i \in \{0,1\}, j \in \{0,, CC_i \}$
ContourContactLinearity	$\sqrt{\sum_{i,j} (C_{i,i}[j] - L_i)^2}$, where
	$C_{i,i}[j] \in CC_i, i \in \{0,1\}, j \in \{0,, CC_i \}, and$
	L_i is the minimizing line
ContourContactCurvL2	$\sqrt{\sum_{i,j} (\operatorname{Curv}(C_{i,i}[j],t,s) - \operatorname{Curv}(C_{i,1-i}[j],t,s))^2}$, where
(4 properties)	$(C_{,ii}[j], C_{i,1-i}[j]) \in CC_i, i \in \{0,1\}, j \in \{0,, CC_i \},$
	$t \in \{ \text{Horizontal} \}, \text{ and } $
	$s \in \{1mm, 2mm, 4mm, 8mm\}$
ContourContactLengthFraction	$Stat(CR_i)/Measurement(C_i))$, where
(4 properties)	Stat \in { Min, Max }, and
	Measurement \in { Perimeter, \sqrt{Area} }
ContourWindowRMSD	$\sqrt{\sum_{i,j} (C_{i,i}[j] - C_{i,1-i}[j])^2}$, where
(3 properties)	$(C_{i,i}[j], C_{i,1-i}[j]) \in CW(s), j \in \{0,, CW(s) \},\$
	and $s \in \{4\text{mm}, 8\text{mm}, 16\text{mm}\}$
ContourMergeConvexity	$Convexity(C_0 \cup C_1)$
ContourMergeConvexityFraction	Stat(Convexity(C_0) / Convexity($C_0 \cup C_1$),
	Convexity(C_1) / Convexity($C_0 \cup C_1$)), where
(2 properties)	Stat \in { Min, Max }
ContourOverlapArea	$ C_0 \cap C_1 $
ContourOverlapDepth	$Stat(Depth(C_{i,i}[j]))$, where
(2 properties)	$C_{i,i}[j] \in CC_i, i \in \{0,1\}, j \in \{0,, CC_i \}, \text{ and }$
	Stat \in { Avg, Max }
ContourJunctionAngle	$Stat(Angle(CJ_i, t))$, where
(4 properties)	Stat \in { Min, Max }, and
	$t \in \{ \text{ Exterior, Interior } \}$

RibbonContactArea	$0.5 \cdot (RR_0 + RR_1)$
RibbonContactDensity	$0.5 \cdot (RC_0 / RR_0 + RC_1 / RR_1)$
RibbonContactLength	$0.5 \cdot ((RR_0 \rightarrow C_0 + RR_1 \rightarrow C_1))$, where
	$RR_i \rightarrow C_i$ is the projection of RR_i onto C_i
RibbonContactRMSD	$\sqrt{\sum_{i,j} (R_{i,i}[j] - R_{i,1-i}[j])^2}$, where
	$(R_{i,i}[j], R_{i,1-i}[j]) \in RC_i, i \in \{0,1\}, j \in \{0,, RC_i \}$
RibbonContactPlanarity	$\sqrt{\sum_{i,j} (R_{i,i}[j] - P_i)^2}$, where
	$R_{i,i}[j] \in RC_i, i \in \{0,1\}, j \in \{0,, RC_i \}, \text{ and }$
	P_i is the minimizing vertical plane
RibbonContactHCurvL2	$\sqrt{\sum_{i,j} (\operatorname{Curv}(R_{i,i}[j],t,s) - \operatorname{Curv}(R_{i,1-i}[j],t,s))^2}$, where
(4 properties)	$(R_{i,i}[j], R_{i,1-i}[j]) \in RC_i, i \in \{0,1\}, j \in \{0,, RC_i \},$
	$t \in \{ \text{Horizontal } \}, \text{ and } $
	$s \in \{1 \text{mm}, 2 \text{mm}, 4 \text{mm}, 8 \text{mm}\}$
RibbonContactCurvL2	$\sqrt{\sum_{i,j} (\operatorname{Curv}(R_{i,i}[j],t,s) - \operatorname{Curv}(R_{i,1-i}[j],t,s))^2}$, where
(4 properties)	$(R_{i,i}[j], R_{i,1-i}[j]) \in RC_i, i \in \{0,1\}, j \in \{0,, RC_i \},$
	$t \in \{ \text{ Vertical, Mean } \}, \text{ and } $
	$s \in \{1 \text{mm}, 2 \text{mm}\}$
RibbonWindowRMSD	$\sqrt{\sum_{i,j} (R_{i,i}[j] - R_{i,1-i}[j])^2}$, where
(3 properties)	$(R_{i,i}[j], R_{i,1-i}[j]) \in RW(s), j \in \{0,, RW(s) \},\$
	and $s \in \{ 4 \text{mm}, 8 \text{mm}, 16 \text{mm} \}$
RibbonJunctionAngle	$Stat(Angle(RJ_i, t))$, where
(4 properties)	Stat \in { Min, Max }, and
	$t \in \{$ Exterior, Interior $\}$
FragmentThicknessL2	$(\text{Thickness}(F_0) - \text{Thickness}(F_1))^2$, where
	Thickness(F_i) is the average number of columns
	with scanned vertex positions in each row of R_i
FragmentFrontColorL2	$(\operatorname{Stat}(I_0, c) - \operatorname{Stat}(I_1, c))^2$, where
(12 properties)	Stat \in { Mean, Median, Variance }, and
	$c \in \{ \text{ Red, Green, Blue, Luminance } \}$
FragmentAreaFraction	$\min(C_0 / C_1 , C_1 / C_0)$

Learn a classifier that predicts the probability that a match is correct based on its properties

Our classifier

Decision Tree

- Each branch checks the value of a property
- Each leaf has linear regression model
- Produces score "rough modeling probability
- Selects good features automatically

RibbonContactRMSD ≤ 0.429 : RibbonContactRMSD ≤ 0.375 : RibbonContactPlanarity ≤ 0.517 : $ContourContactRMSD \le 0.286$: ContourContact4mmHorizCurvL2 ≤ 0.009 : LM1 (29) ContourContact4mmHorizCurvL2 > 0.009 : LM2 (112) ContourContactRMSD > 0.286 : LM3 (560) RibbonContactPlanarity > 0.517 : RibbonContactArea <= 446.36 : RibbonContactRMSD ≤ 0.36 : RibbonJunctionMinInteriorAngle <= 2.232 : ContourContactRMSD ≤ 0.217 : LM4 (17) ContourContactRMSD > 0.217: ContourContactMinLenAreaFract <= 0.309 : LM5 (20) ContourContactMinLenAreaFract > 0.309 : RibbonContactRMSD ≤ 0.331 : LM6 (12) RibbonContactRMSD > 0.331 : LM7 (20) RibbonJunctionMinInteriorAngle > 2.232 : LM8 (29) RibbonContactRMSD > 0.36 : LM9 (91) RibbonContactArea > 446.36 : LM10 (53) RibbonContactRMSD > 0.375: RibbonContactArea <= 235.969 : LM11 (3015) RibbonContactArea > 235.969 : RibbonContact1mmMeanCurvL2 ≤ 0.121 : LM12 (603) RibbonContact1mmMeanCurvL2 > 0.121 : LM13 (151) RibbonContactRMSD > 0.429 : LM14 (7416)

Decision tree learned on Synthetic

e

Our classifier

• Decision Tree

- Each branch checks the value of a property
- Each leaf has

Truth =

- -0.0013 * RibbonContactRMSD
- + 0 * RibbonContactArea
- + 0.0001 * RibbonContactPlanarity
- + 0.0005 * RibbonContact1mmMeanCurvatureL2
- + 0 * RibbonJointMinInteriorAngle
- + 0 * RibbonJointMaxExteriorAngle
- 0.0001 * ContourContactRMSD
- 0.0007 * ContourContact4mmHorizontalCurvatureL2
 + 0.0002

"Matches with large ContactRMSD are unlikely" (score is near zero) RibbonContactRMSD ≤ 0.429 : RibbonContactRMSD ≤ 0.375 : RibbonContactPlanarity ≤ 0.517 : $ContourContactRMSD \le 0.286$: ContourContact4mmHorizCurvL2 ≤ 0.009 : LM1 (29) ContourContact4mmHorizCurvL2 > 0.009 : LM2 (112) ContourContactRMSD > 0.286 : LM3 (560)RibbonContactPlanarity > 0.517 : RibbonContactArea <= 446.36 : RibbonContactRMSD ≤ 0.36 : RibbonJunctionMinInteriorAngle <= 2.232 : ContourContactRMSD ≤ 0.217 : LM4 (17) ContourContactRMSD > 0.217: ContourContactMinLenAreaFract <= 0.309 : LM5 (20) ContourContactMinLenAreaFract > 0.309 : RibbonContactRMSD ≤ 0.331 : LM6 (12) RibbonContactRMSD > 0.331 : LM7 (20) RibbonJunctionMinInteriorAngle > 2.232 : LM8 (29) RibbonContactRMSD > 0.36 : LM9 (91) **■**ibbonContactArea > 446.36 : LM10 (53) RibbonContactRMSD > 0.375 : RibbonContactArea <= 235.969 : LM11 (3015) RibbonContactArea > 235.969 : RibbonContacthamMeanCurvL2 <= 0.121 : LM12 (603) RibbonContact1mmMe mCurVD > 0.121 : LM13 (151)RibbonContactRMSD > 0.429 LM14 (7416)

Decision tree learned on Synthetic

del

Our classifier

• Decision Tree

- Each branch checks the value of a property
- Each leaf has

Truth =

- -5.1265 * RibbonContactRMSD
- + 0 * RibbonContactArea
- + 0.0138 * RibbonContactPlanarity
- + 0.012 * RibbonContact1mmMeanCurvatureL2
- 0.0286 * RibbonJointMinInteriorAngle
- + 0.0006 * RibbonJointMaxExteriorAngle
- 0.0011 * ContourContactRMSD
- 0.1677 * ContourContact4mmHorizontalCurvatureL2
- + 0.6273 * ContourContactMinLengthAreaFraction + 1.9331

"Matches with small ContactRMSD, high Planarity, a small interior angle at least at one junction, and a large relative contact length are likely to be correct" (score is large)

RibbonContactRMSD ≤ 0.429 : RibbonContactRMSD ≤ 0.375 : RibbonContactPlanarity ≤ 0.517 : $ContourContactRMSD \le 0.286$: ContourContact4mmHorizCurvL2 ≤ 0.009 : LM1 (29) ContourContact4mmHorizCurvL2 > 0.009 : LM2 (112) ContourContactRMSD > 0.286 : LM3 (560)RibbonContactPlanarity > 0.517 : RibbonContactArea <= 446.36 : RibbonContactRMSD ≤ 0.36 : RibbonJunctionMinInteriorAngle <= 2.232 : ContourContactRMSD <= 0.217 : LM4 (17) ContourContactRMSD > 0.217: ContourContactMinLenAreaFract <= 0.309 : LM5 (20) ContourContactMinLenAreaFract > 0.309 RibbonContactRMSD < 0.331 : LM6 (RibbonContactRMSD > 0.331 : LM7 (2) RibbonJunctionMinInteriorAngle > 2.232 : LM8 (29) RibbonContactRMSD > 0.36 : LM9 (91) RibbonContactArea > 446.36 : LM10 (53) RibbonContactRMSD > 0.375 : RibbonContactArea <= 235.969 : LM11 (3015) RibbonContactArea > 235.969 : RibbonContact1mmMeanCurvL2 <= 0.121 : LM12 (603) RibbonContact1mmMeanCurvL2 > 0.121 : LM13 (151) RibbonContactRMSD > 0.429 : LM14 (7416)

Decision tree learned on Synthetic

Experimental Data Sets

Synthetic Fresco

- Made specifically for this project
- Made in the style of Akrotiri wall paintings
- Destroyed purposely in 2007 A.D.

Tongeren Vrijthof

- Tongeren, Belgium
- Roman building
- \circ Destroyed by fire between 1 A.D. 300 A.D.

Akrotiri

- Thera (Santorini, Greece)
- Late Bronze Age settlement
- Destroyed by earthquake around 1650 B.C.

Experiment Design

Train on Fresco X

- Use ribbonmatcher to generate candidate matches
- Compute properties of candidate matches
- Mark candidate matches that are correct
- Learn classifier to predict correctness of matches

Test on Fresco Y

- Use ribbonmatcher to generate candidate matches
- Compute properties of candidate matches
- Mark candidate matches that are correct
- Apply classifier to predict correctness of (score) matches
- Sort matches by score, and plot precision vs. recall

Testing on Synthetic Fresco:

Testing on Synthetic Fresco:

Testing on Tongeren Vrijthof Fresco:

Testing on Akrotiri Fresco:

Results of Predictions Sent to Akrotiri

Totals of all predictions:

- Likely: 48 correct, 1 incorrect, 1 uncheckable
- Probable: 7 correct, 0 incorrect
- Possible: 25 correct, 19 incorrect, 1 uncheckable
- Maybe: 5 correct, 10 incorrect
- Remote: 2 correct, 15 incorrect
- Longshot: 0 incorrect, 14 incorrect

Summary:

- 87 correct matches
- 36 missed (found by conservators)
- 43 new (not found by conservators)

Summary

3D surface analysis uses many of the same techniques as 2D image analysis, except ...

Summary

- 3D surface analysis uses many of the same techniques as 2D image analysis, except ...
 - More complex topology
 - Irregular sampling
 - One more dimension
 - Fewer high-frequency features
 - etc.