Active 3D Scanning

COS 429

Princeton University
3D Scanning

The accuracy and completeness of models produced with multi-view stereo of stereo is limited.
Multiview Stereo

Snavely et al. & Furukawa et al.
Multiview Stereo

Snavely et al. & Furukawa et al.
3D Scanning
<table>
<thead>
<tr>
<th>3D Scanning Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Computer graphics</td>
</tr>
<tr>
<td>• Product inspection</td>
</tr>
<tr>
<td>• Robot navigation</td>
</tr>
<tr>
<td>• As-built floorplans</td>
</tr>
<tr>
<td>• Product design</td>
</tr>
<tr>
<td>• Archaeology</td>
</tr>
<tr>
<td>• Clothes fitting</td>
</tr>
<tr>
<td>• Art history</td>
</tr>
</tbody>
</table>
Robotics
Digital Inspection
Entertainment

Scalable 3D Video of Dynamic Scenes
M. Waschbüsch, S. Würmlin, D. Cotting, F. Sadlo, M. Gross
Medical Imaging & Surgical Planning
Architecture & Building
Historical Preservation
3D Printing
Outline

- 3D scanning methods
- 3D scan processing
- Example applications
Outline

• 3D scanning methods
• 3D scan processing
• Example applications
3D Scanning Taxonomy

- Range acquisition
 - Contact
 - Mechanical (CMM, jointed arm)
 - Inertial (gyroscope, accelerometer)
 - Ultrasonic trackers
 - Magnetic trackers
 - Transmissive
 - Industrial CT
 - Ultrasound
 - MRI
 - Reflective
 - Non-optical
 - Radar
 - Sonar
 - Optical
Touch Probes

- Jointed arms with angular encoders
- Return position, orientation of tip

Faro Arm – Faro Technologies, Inc.
Pulsed Time of Flight

- Basic idea: send out pulse of light (usually laser), time how long it takes to return

\[d = \frac{1}{2}c\Delta t \]
Pulsed Time of Flight

• Advantages:
 – Large working volume (up to 100 m.)

• Disadvantages:
 – Not-so-great accuracy (at best ~5 mm.)
 • Requires getting timing to ~30 picoseconds
 • Does not scale with working volume

• Often used for scanning buildings, rooms, archeological sites, etc.
Triangulation
Triangulation
Point Triangulation

Figure 9.5: General arrangement for a method based on light spot stereo analysis.
The ray theorem (of central projection) tells us that \(\frac{X}{x} = \frac{Z}{f} = \frac{Y}{y} \), and from the trigonometry of right triangles we know that \(\tan \alpha = \frac{Z}{b-X} \). It follows that

\[
Z = \frac{X}{x} \cdot f = \tan \alpha \cdot (b-X) \quad \text{and} \quad X \cdot \left(\frac{f}{x} + \tan \alpha \right) = \tan \alpha \cdot b
\]

The solution is

\[
X = \frac{\tan \alpha \cdot b \cdot x}{f + x \cdot \tan \alpha}, \quad Y = \frac{\tan \alpha \cdot b \cdot y}{f + x \cdot \tan \alpha}, \quad Z = \frac{\tan \alpha \cdot b \cdot f}{f + x \cdot \tan \alpha}
\]
Stripe Triangulation

Diagram showing a laser, object, and camera.
Stripe Triangulation
Stripe Triangulation

Object

Light Plane

\[AX + BY + CZ + D = 0 \]

\[D = -d \text{ (distance)} \]

Image Point

\((x', y') \)

Camera

Plug X, Y into plane equation to get Z

\[X = x' \frac{Z}{f'} \]

\[Y = y' \frac{Z}{f'} \]

\[Z = \frac{-Df'}{Ax' + By' + Cf'} \]

Courtesy S. Narasimhan, CMU
Multi-Stripe Triangulation
Color-Coded Stripe Triangulation

Active Scanning

Zhang et al, 3DPVT 2002
Stereo Triangulation

Passive Stereo

$w(X\ Y\ Z)^T$

{C_1}

{C_2}

{W}
Color-Coded Stripe Triangulation

Zhang et al, 3DPVT 2002
Time-Coded Stripe Triangulation

Assign each stripe a unique illumination code over time

[Posdamer 82]
Time-Coded Stripe Triangulation
Time-Coded Stripe Triangulation
Time-Coded Stripe Triangulation

3D Reconstruction using Structured Light [Inokuchi 1984]
Structured Light Patterns

Spatial encoding strategies [Chen et al. 2007]

De Bruijn sequences [Zhang et al. 2002]

Phase-shifting [Zhang et al. 2004]

Pseudorandom and M-arrays [Griffin 1992]

“Single-shot” patterns (N-arrays, grids, random, etc.)
Kinect

- IR Emitter
- Color Sensor
- IR Depth Sensor
- Tilt Motor
- Microphone Array
Kinect

Projected IR Pattern
Kinect

Depth Map

RGB Image
Kinect

infrared speckle pattern about 3 feet from kinect

How the Kinect Depth Sensor Works in 2 Minutes

http://www.youtube.com/watch?v=uq9SEJxZiUg
http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf
Kinect

Shotton, Fitzgibbon, Cook, Sharp, Finocchio, Moore, Kipman, Blake,
Real-Time Human Pose Recognition in Parts from a Single Depth Image, CVPR
Active Scanner Issues

- Material properties (dark, specular)
Triangulation Scanner Issues

- Material properties (dark, specular)
- Subsurface scattering
Triangulation Scanner Issues

- Material properties (dark, specular)
- Subsurface scattering
- Laser speckle
- Edge curl
- Texture embossing
Triangulation Scanner Issues

- Small working volume (baseline too large...)
- Triangulation angle: non-uniform resolution if too small, shadowing if too big (useful range: 15°-30°)
- Two-line-of-sight problem (shadowing from either camera or laser)
Outline

• 3D scanning methods
• 3D scan processing
• Example applications
3D Scan Processing Pipeline
3D Scan Processing Pipeline

• Steps
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method
3D Scan Processing Pipeline

• Steps
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method
3D Scan Processing Pipeline

- Steps
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method
3D Scan Processing Pipeline

- Steps
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method
3D Scan Processing Pipeline

• Steps
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method
3D Scan Processing Pipeline

- **Steps**
 1. manual initial alignment
 2. ICP to one existing scan
 3. automatic ICP of all overlapping pairs
 4. global relaxation to spread out error
 5. merging using volumetric method
Outline

• 3D scanning methods
• 3D scan processing
• Example applications
Example Application: Scanning Sculptures

- The Pietà Project
 IBM Research

- The Digital Michelangelo Project
 Stanford University

- The Great Buddha Project
 University of Tokyo
Why Scan Sculptures?

• Sculptures interesting objects to look at
• Introduce scanning to new disciplines
 – Art: studying working techniques
 – Art history
 – Cultural heritage preservation
 – Archeology
• High-visibility projects
Why Scan Sculptures?

• Challenging
 – High detail, large areas
 – Large data sets
 – Field conditions
 – Pushing hardware, software technology

• But not too challenging
 – Simple topology
 – Possible to scan most of surface
Issues Addressed

• Resolution
• Coverage
 – Theoretical: limits of scanning technologies
 – Practical: physical access, time
• Type of data
 – High-res 3D data vs. coarse 3D + normal maps
 – Influenced by eventual application
• Intellectual Property
IBM’s Pietà Project

- Michelangelo’s “Florentine Pietà”
- Late work (1550s)
- Partially destroyed by Michelangelo, recreated by his student
- Currently in the Museo dell’Opera del Duomo in Florence
Who?

- Dr. Jack Wasserman, professor emeritus of art history at Temple University
- Visual and Geometric Computing group @ IBM Research:
 - Fausto Bernardini
 - Holly Rushmeier
 - Ioana Martin
 - Joshua Mittleman
 - Gabriel Taubin
 - Andre Gueziec
 - Claudio Silva
Scanner

- Visual Interface “Virtuoso”
- Active multibaseline stereo
- Projector (stripe pattern), 6 B&W cameras, 1 color camera
- Augmented with 5 extra “point” light sources for photometric stereo (active shape from shading)
Data

- Range data has 2 mm spacing, 0.1mm noise
- Each range image: 10,000 points, 20×20 cm
- Color data: 5 images with controlled lighting, 1280×960, 0.5 mm resolution
- Total of 770 scans, 7.2 million points
Scanning

- Final scan June 1998, completed July 1999
- Total scanning time: 90 hours over 14 days (includes equipment setup time)
Postprocessing

• Use 11×11 grid of projected laser dots to help with pairwise alignment
• Align all scans to each other, then apply nonrigid “conformance smoothing”
• Reconstruct surface using BPA
• Compute normal and albedo maps, align to geometry
Results
The Digital Michelangelo Project
Goals

• Scan 10 sculptures by Michelangelo
• High-resolution (“quarter-millimeter”) geometry
• Side projects: architectural scanning (Accademia and Medici chapel), scanning fragments of Forma Urbis Romae
Why Capture Chisel Marks?

Atlas (Accademia)

ugnetto
Why Capture Chisel Marks as Geometry?

Day (Medici Chapel)
Who?

Faculty and staff
Prof. Brian Curless
Jelena Jovanovic
Lisa Pacelle
Dr. Kari Pulli
Prof. Marc Levoy
Domi Pitturo

Graduate students
Sean Anderson
James Davis
Lucas Pereira
Jonathan Shade
Daniel Wood
Barbara Caputo
Dave Koller
Szymon Rusinkiewicz
Marco Tarini

Undergraduates
Alana Chan
Jeremy Ginsberg
Unnur Gretarsdottir
Wallace Huang
Ephraim Luft
Semira Rahemtulla
Joshua Schroeder
David Weekly
Kathryn Chinn
Matt Ginzton
Rahul Gupta
Dana Katter
Dan Perkel
Alex Roetter
Maisie Tsui

In Florence
Dottssa Cristina Acidini
Dottssa Licia Bertani
Dottssa Franca Falletti
Alessandra Marino
Matti Auvinen

In Rome
Prof. Eugenio La Rocca
Dottssa Anna Somella
Dottssa Susanna Le Pera
Dottssa Laura Ferrea

In Pisa
Roberto Scopigno

Sponsors
Interval Research
Stanford University
Paul G. Allen Foundation for the Arts

Equipment donors
Cyberware
Faro Technologies
Silicon Graphics
3D Scanners
Cyra Technologies
Intel
Sony
Scanner Design

- **Flexibility**
 - outward-looking rotational scanning
 - 16 ways to mount scan head on arm

- **Accuracy**
 - center of gravity kept stationary during motions
 - precision drives, vernier homing, stiff trusses

4 motorized axes

laser, range camera, white light, and color camera
Scanning a Large Object

- **Calibrated motions**
 - pitch (yellow)
 - pan (blue)
 - horizontal translation (orange)

- **Uncalibrated motions**
 - vertical translation
 - rolling the gantry
 - remounting the scan head
Postprocessing

- Manual initial alignment
- Pairwise ICP, then global registration
- VRIP (parallelized across subvolumes)
- Use high-res geometry to discard bad color data, perform inverse lighting calculations
Statistics About the Scan of David

- 480 individually aimed scans
- 0.3 mm sample spacing
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scanning
- 22 people
Head of Michelangelo’s David

Photograph

1.0 mm computer model
Side project:
The Forma Urbis Romae
Forma Urbis Romae Fragment

side face
forma urbis romae
Hard Problems

• Keeping scanner calibrated is hard in the lab, really hard in the museum
• Dealing with large data sets is painful
• Filling all the holes converges only asymptotically (if it converges at all…)
The Great Buddha Project

- Great Buddha of Kamakura
- Original made of wood, completed 1243
- Covered in bronze and gold leaf, 1267
- Approx. 15 m tall
- Goal: preservation of cultural heritage
Who?

• Institute of Industrial Science, University of Tokyo

Daisuke Miyazaki
Takeshi Ooishi
Taku Nishikawa
Ryusuke Sagawa

Ko Nishino
Takashi Tomomatsu
Yutaka Takase
Katsushi Ikeuchi
Scanner

- Cyrax range scanner by Cyra Technologies
- Laser pulse time-of-flight
- Accuracy: 4 mm
- Range: 100 m
Processing

• 20 range images (a few million points)
• Simultaneous all-to-all ICP
• Variant of volumetric merging (parallelized)
Results
Summary

• Advantages of active scanning
 – Usually higher accuracy

• Disadvantages of active scanning
 – Need to project light into scene
 – Limits on working volume, lighting conditions, etc.
 – Sometimes slower