Active 3D Scanning

COS 429 Princeton University

The accuracy and completeness of models produced with multi-view stereo of stereo is limited

Multiview Stereo

Snavely et al. & Furukawa et al.

Multiview Stereo

3D Scanning Applications

- Computer graphics
- Product inspection
- Robot navigation
- As-built floorplans

- Product design
- Archaeology
- Clothes fitting
- Art history

Robotics

Digital Inspection

Entertainment

Medical Imaging & Surgical Planning

Architecture & Building

Historical Preservation

MLLBoogeat at The BigitzIng ind Amgdyzi Rojbet MD Stism in ED for Compatibility in the Standing State of States of S

P. Debevec. Making "The Parthenon". Intl. Sym. on Virtual Rea Archaeology, and Cultural Heritage, 2005

3D Printing

Outline

- 3D scanning methods
- 3D scan processing
- Example applications

Outline

- 3D scanning methods
- 3D scan processing
- Example applications

3D Scanning Taxonomy

Touch Probes

- Jointed arms with angular encoders
- Return position, orientation of tip

Faro Arm – Faro Technologies, Inc.

Pulsed Time of Flight

 Basic idea: send out pulse of light (usually laser), time how long it takes to return

> DeltaSphere-3000 ≡3rdTech

A COLUMN

Pulsed Time of Flight

- Advantages:
 - Large working volume (up to 100 m.)
- Disadvantages:
 - Not-so-great accuracy (at best ~5 mm.)
 - Requires getting timing to ~30 picoseconds
 - Does not scale with working volume
- Often used for scanning buildings, rooms, archeological sites, etc.

Triangulation

Triangulation

Point Triangulation

Figure 9.5: General arrangement for a method based on light spot stereo analysis.

Point Triangulation

The ray theorem (of central projection) tells us that $\frac{X}{x} = \frac{Z}{f} = \frac{Y}{y}$, and from the trigonometry of right triangles we know that $\tan \alpha = \frac{Z}{b-X}$. It follows that

$$Z = \frac{X}{x} \cdot f = \tan \alpha \cdot (b - X)$$
 and $X \cdot \left(\frac{f}{x} + \tan \alpha\right) = \tan \alpha \cdot b$

The solution is

$$X = \frac{\tan \alpha \cdot b \cdot x}{f + x \cdot \tan \alpha}, \ Y = \frac{\tan \alpha \cdot b \cdot y}{f + x \cdot \tan \alpha}, \ Z = \frac{\tan \alpha \cdot b \cdot f}{f + x \cdot \tan \alpha}$$

Stripe Triangulation

Stripe Triangulation

Stripe Triangulation

Multi-Stripe Triangulation

Color-Coded Stripe Triangulation

Stereo Triangulation

Color-Coded Stripe Triangulation

Zhang et al, 3DPVT 2002

Assign each stripe a unique illumination code over time

Space

[Posdamer 82]

3D Reconstruction using Structured Light [Inokuchi 1984]

Structured Light Patterns

Spatial encoding strategies [Chen et al. 2007]

Pseudorandom and M-arrays [Griffin 1992]

J. Salvi, J. Pagès, and J. Batlle. Pattern Codification Strategies in Structured Light Systems. *Pattern Recognition*, 2004

"Single-shot" patterns (N-arrays, grids, random, etc.)

De Bruijn sequences [Zhang et al. 2002]

Phase-shifting [Zhang et al. 2004]

Kinect

Depth Map

RGB Image

How the Kinect Depth Sensor Works in 2 Minutes

http://www.youtube.com/watch?v=uq9SEJxZiUg

http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf

Shotton, Fitzgibbon, Cook, Sharp, Finocchio, Moore, Kipman, Blake, Real-Time Human Pose Recognition in Parts from a Single Depth Image, *CVPR*

Active Scanner Issues

• Material properties (dark, specular)

Triangulation Scanner Issues

- Material properties (dark, specular)
- Subsurface scattering

Triangulation Scanner Issues

- Material properties (dark, specular)
- Subsurface scattering
- Laser speckle
- Edge curl
- Texture embossing

Triangulation Scanner Issues

- Small working volume (baseline too large...)
- Triangulation angle: non-uniform resolution if too small, shadowing if too big (useful range: 15°-30°)
- Two-line-of-sight problem (shadowing from either camera or laser)

Outline

- 3D scanning methods
- 3D scan processing <---
- Example applications

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

• Steps

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

Outline

- 3D scanning methods
- 3D scan processing
- Example applications <---

Example Application: Scanning Sculptures

• The Pietà Project IBM Research

 The Digital Michelangelo Project Stanford University

The Great Buddha Project
 University of Tokyo

Why Scan Sculptures?

- Sculptures interesting objects to look at
- Introduce scanning to new disciplines
 - Art: studying working techniques
 - Art history
 - Cultural heritage preservation
 - Archeology
- High-visibility projects

Why Scan Sculptures?

Challenging

- High detail, large areas
- Large data sets
- Field conditions
- Pushing hardware, software technology
- But not too challenging
 - Simple topology
 - Possible to scan most of surface

Issues Addressed

- Resolution
- Coverage
 - Theoretical: limits of scanning technologies
 - Practical: physical access, time
- Type of data
 - High-res 3D data vs. coarse 3D + normal maps
 - Influenced by eventual application
- Intellectual Property

IBM's Pietà Project

- Michelangelo's "Florentine Pietà"
- Late work (1550s)
- Partially destroyed by Michelangelo, recreated by his student
- Currently in the Museo dell'Opera del Duomo in Florence

Who?

 Dr. Jack Wasserman, professor emeritus of art history at Temple University

Visual and Geometric Computing group
 (@ IBM Research:

Fausto Bernardini Holly Rushmeier Ioana Martin Joshua Mittleman Gabriel Taubin Andre Gueziec Claudio Silva

Scanner

- Visual Interface "Virtuoso"
- Active multibaseline stereo
- Projector (stripe pattern),
 6 B&W cameras, 1 color camera
- Augmented with 5 extra "point" light sources for photometric stereo (active shape from shading)

Data

- Range data has 2 mm spacing, 0.1mm noise
- Each range image: 10,000 points, 20×20 cm
- Color data: 5 images with controlled lighting, 1280×960, 0.5 mm resolution
- Total of 770 scans, 7.2 million points

Scanning

- Final scan June 1998, completed July 1999
 Total scanning time: 90 hours over 14 days
 - (includes equipment setup time)

Postprocessing

- Use 11×11 grid of projected laser dots to help with pairwise alignment
- Align all scans to each other, then apply nonrigid "conformance smoothing"
- Reconstruct surface using BPA
- Compute normal and albedo maps, align to geometry

Results

The Digital Michelangelo Project

Goals

- Scan 10 sculptures by Michelangelo
- High-resolution ("quarter-millimeter") geometry
- Side projects: architectural scanning (Accademia and Medici chapel), scanning fragments of Forma Urbis Romae

Why Capture Chisel Marks?

Atlas (Accademia)

Why Capture Chisel Marks as Geometry?

Day (Medici Chapel)

ho?

Faculty and staff

Prof. Brian Curless Jelena Jovanovic Lisa Pacelle Dr. Kari Pulli

Graduate students

Sean Anderson lames Davis Lucas Pereira Ionathan Shade Daniel Wood

Barbara Caputo Dave Koller Szymon Rusinkiewicz Marco Tarini

John Gerth

Domi Pitturo

Prof. Marc Levoy

Undergraduates

Alana Chan Jeremy Ginsberg Unnur Gretarsdottir Rahul Gupta Wallace Huang **Ephraim Luft** Semira Rahemtulla Joshua Schroeder David Weekly

Kathryn Chinn Matt Ginzton Dana Katter Dan Perkel Alex Roetter Maisie Tsui

In Florence

Dottssa Cristina Acidini Dottssa Franca Falletti Alessandra Marino Dottssa Licia Bertani Matti Auvinen

In Rome

Prof. Eugenio La Rocca Dottssa Susanna Le Pera Dottssa Anna Somella Dottssa Laura Ferrea

In Pisa **Roberto Scopigno**

Sponsors

Interval Research Stanford University Paul G. Allen Foundation for the Arts

Equipment donors

Cyberware **Faro Technologies** Silicon Graphics **3D** Scanners

Cyra Technologies Intel Sony

Scanner Design

4 motorized axes

laser, range camera, white light, and color camera

Flexibility

 outward-looking rotational scanning

16 ways to mount scan head on arm

Accuracy

- center of gravity kept stationary during motions
- precision drives, vernier homing, stiff trusses

Scanning a Large Object

Calibrated motions

- pitch (yellow)
- pan (blue)
- horizontal translation (orange)

- Uncalibrated motions
 - vertical translation
 - rolling the gantry
 - remounting the scan head

Postprocessing

- Manual initial alignment
- Pairwise ICP, then global registration
- VRIP (parallelized across subvolumes)
- Use high-res geometry to discard bad color data, perform inverse lighting calculations

Statistics About the Scan of David

 480 individually aimed scans • 0.3 mm sample spacing • 2 billion polygons • 7,000 color images • 32 gigabytes • 30 nights of scanning • 22 people

Head of Michelangelo's David

1.0 mm computer model

Photograph

Side project: The Forma Urbis Romae

Forma Urbis Romae Fragment

forma urbis romae

Hard Problems

- Keeping scanner calibrated is hard in the lab, really hard in the museum
- Dealing with large data sets is painful
- Filling all the holes converges only asymptotically (if it converges at all...)

The Great Buddha Project

- Great Buddha of Kamakura
- Original made of wood, completed 1243
- Covered in bronze and gold leaf, 1267
- Approx. 15 m tall
- Goal: preservation of cultural heritage

Who?

 Institute of Industrial Science, University of Tokyo

Daisuke Miyazaki Takeshi Ooishi Taku Nishikawa Ryusuke Sagawa

Ko Nishino Takashi Tomomatsu Yutaka Takase Katsushi Ikeuchi

Scanner

Cyrax range scanner by Cyra Technologies
Laser pulse time-of-flight
Accuracy: 4 mm
Range: 100 m

Processing

- 20 range images (a few million points)
- Simultaneous all-to-all ICP
- Variant of volumetric merging (parallelized)

Results

Summary

- Advantages of active scanning

 Usually higher accuracy
- Disadvantages of active scanning
 - Need to project light into scene
 - Limits on working volume, lighting conditions, etc.
 - Sometimes slower