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Binocular Stereo Reconstruction 

Recover dense 3D structure of a scene using  

two images from different viewpoints 

Bebis 



Binocular Stereo Reconstruction 

Recover dense 3D structure of a scene using  

two images from different viewpoints 

image 1 image 2 

Dense depth map 



Applications? 



Applications 

Scene modeling 

Segmentation 

Human-computer interaction 

Autonomous driving 

View interpolation 

etc. 

 



Scene Modeling 

From a pair of images to a 3D head model 

 

 

 

 

 

 

 

 
 

[Frederic Deverney, INRIA] 



Segmentation 

Danijela Markovic and Margrit Gelautz, Interactive Media Systems Group, Vienna University of Technology 

Edges in 

disparity in 

conjunction with 

image edges 

enhances 

contours found 



Human-Computer Interaction 

http://www.youtube.com/watch?v=Q1NE_LIg9pY 

http://www.youtube.com/watch?v=Q1NE_LIg9pY


Autonomous Driving 

Forsyth & Ponce 

Stanford Inria 



Autonomous Driving 

Franke et al., ―How Cars Learned to See‖ 



View Interpolation 

Given two images with correspondences, create 

novel image from in-between viewpoints 

 

[Seitz & Dyer, SIGGRAPH‘96] 



View Interpolation 

Given two images with correspondences, create 

novel image from in-between viewpoints 

 

 

[Seitz & Dyer, SIGGRAPH‘96] 



Problem 

What are the key steps of a stereo algorithm? 

image 1 image 2 Dense depth map 



Three Steps 

 

(1) Camera calibration 

 

(2) Dense pixel correspondence 

 

(3) Depth estimation 

 



Three Steps 

 

(1) Camera calibration 

 

(2) Dense pixel correspondence 

 

(3) Depth estimation 

 



Review: Camera Calibration 

Given a (pair of) image(s), compute intrinsic and 

extrinsic camera parameters 

• We talked about calibration before break 

• Use vanishing points, sparse correspondences, etc.  

3D point 
(homogeneous coords) 

Camera 

location 

Camera 

orientation 

Perspective 

projection 

Scale to 

pixel size 

Translate 

to image 

center 

Then perform 

homogeneous 

divide, and 

get (u,v) coords 

Then unwarp 

radial distortion 



Three Steps 

 

(1) Camera calibration 

 

(2) Dense pixel correspondence 

 

(3) Depth estimation 

 



Dense Pixel Correspondence 

Given two calibrated cameras, find a dense set of 

pixel pairs that correspond to the same 3D point 

 left camera right camera 

Bebis 



Given p in left image, where can corresponding point 

p‘ be? 

Kristen Grauman 

Dense Pixel Correspondence 



Geometry of two views constrains where the corresponding pixel 

for some image point in the first view must occur in the second 

view: it must be on the line carved out by a plane connecting the 

world point and optical centers.  
 

Kristen Grauman 

Review: Epipolar constraint 



Review: Epipolar constraint 

• Epipolar Constraint 

– Matching points lie along corresponding epipolar lines 

– Reduces correspondence problem to 1D search 

along conjugate epipolar lines 

– Greatly reduces cost and ambiguity of matching 
 

epipolar plane 
epipolar line epipolar line 

Slide credit: Steve Seitz 



The epipolar constraint is particularly convenient if the 

images are ―rectified‖ 

• Image planes of cameras are parallel. 

• Focal points are at same height. 

• Focal lengths same. 

 

Then, epipolar lines are horizontal scan lines of the images 

Image from Andrew Zisserman 

Review: Epipolar constraint 



Image Rectification 

Can rectify any image pair 

Seitz 



Image Rectification 

Can rectify any image pair 

 

 

 

 

 

 

 

Project onto common  

view plane parallel to  

line between viewpoints 
Seitz 



Image Rectification 

Original Images 

Rectified Images 



PL = (X,Y,Z) OL 

x 

y 

z 
(xl,y) 

OR 

x 

y 

z 

(xr,y) 

Stereo for Rectified Images 



baseline 

optical 

center (left) 

optical 

center 

(right) 

Focal 

length 

World 

point 

Depth of p 

image point 

(left) 
image point 

(right) 

Slide credit: Kristen Grauman 

B 

Disparity = xl - xr 



Three Steps 

 

(1) Camera calibration 

 

(2) Dense pixel correspondence 

 

(3) Depth estimation (for one slide) 

 



Depth Estimation 

We can estimate depth from disparity using similar 

triangles (pl, P, pr) and (Ol, P, Or): 
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disparity 

Slide credit: Kristen Grauman 

B 



Main Challenge: Compute Disparity 

image Left(x,y) image Right(x´,y´) Disparity map d(x,y) 

(x´,y´)=(x-d(x,y), y) 

Slide credit: Kristen Grauman 



Three Steps 

 

(1) Camera calibration 

 

(2) Dense pixel correspondence (again) 

 

(3) Depth estimation 

 



Stereo Correspondence for Rectified Images 

Left Right 

Left Right 

scanline 

Goal: find the optimal disparity 

for every pixel of the left image 



Stereo Correspondence for Rectified Images 

Left Right 

Left Right 

scanline 

What do we mean by ―optimal disparity?‖ 



Optimal Disparity? 

Solution should: 

• Align similar looking pixels 

• Adhere to (expected) constraints of  

stereo geometry  



Measuring Pixel Dissimilarity 

Left Right 

Lw Rw

RI
),( LL yx ),( LL ydx 

m

m

‗Window‘ matching error: 



Measuring Pixel Dissimilarity 
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Correspondence 

         Cost 

Disparity 

Left Right 

scanline 

Simple Algorithm 

Simple algorithm: 

• Slide a window along the right scanline 

and compare contents of that window with 

the reference window in the left image 

• Return disparity with minimal  

pixel dissimilarity 
Seitz 



Simple Algorithm 

For each epipolar line 

 For each pixel / window in the left image 

• compare with every pixel / window on same  

epipolar line in right image 

• pick position with minimum dissimilarity 

(e.g., luminance difference) 

Adapted from Li Zhang Kristen Grauman 



Failures of Simple Algorithm 

Textureless surfaces Occlusions, repetition 

Non-Lambertian surfaces, specularities 
Seitz 



W = 3 W = 20 

Figures from Li Zhang 

Want window large enough to have sufficient intensity 

variation, yet small enough to contain only pixels with 

about the same disparity. 

What about larger window sizes? 



Global Correspondence problem 

Beyond the hard constraint of epipolar geometry 
and the soft constraint of pixel similarities,  
other considerations can be used to help  
identify correspondences 

• Uniqueness 

• Ordering 

• Smoothness 

 

 

Kristen Grauman 



Uniqueness 

One match in right image for every point in left image 

Figure from Gee & 

Cipolla 1999 



Ordering 

Points on same surface (opaque object) should be in 

same order in both views 

 

Figure from Gee & 

Cipolla 1999 



Ordering 

Points on same surface (opaque object) should be in 

same order in both views 

• Not always true, but still useful 

 

Figures from Forsyth & Ponce 

Transparent surface Thin occluder 



Smoothness 

If surfaces are smooth and there are no 

occlusions, then disparities are smooth  

 

… … 

Left scanline Right scanline 

Thrun, Szeliski, Dahlkamp, and Morris 



Smoothness 

What is an occlusion? 

Slide credit: David Kriegman 

Occlusion Disocclusion 



Smoothness 

What happens to disparity for occlusions? 

Thrun, Szeliski, Dahlkamp, and Morris 

… … 

Left scanline Right scanline 



Smoothness 

What happens to disparity for occlusions? 

 

… … 

Left scanline Right scanline 

Match 

Match 

Match Occlusion Disocclusion 

Thrun, Szeliski, Dahlkamp, and Morris 



Smoothness 

Three cases: 
• Sequential – smooth disparity 

• Occluded – causes negative jump in disparity 

• Disoccluded – causes positive jump in disparity 

Left scanline 

Right scanline 

Occluded Pixels 

Disoccluded Pixels 

Thrun, Szeliski, Dahlkamp, and Morris 



Challenge 

Solve for disparities that not only align similar 

pixels but also have soft constraints between them 

• Uniqueness 

• Ordering 

• Smoothness 

 

 

How? 



Stereo as an Optimization Problem 

Minimize error function: 

data(x, y, k) = cost of assigning disparity k at pixel (x,y)  

 

smoothness(d1, d2) = cost of assigning disparities  

                                d1 and d2 at neighboring pixels. 

where: 

𝐸 𝑥, 𝑦, 𝑑 =  𝑑𝑎𝑡𝑎 𝑥, 𝑦, 𝑑(𝑥, 𝑦)

𝑃𝑖𝑥𝑒𝑙𝑠

𝑥,𝑦

+  𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑑 𝑥, 𝑦 , 𝑑 𝑛𝑥, 𝑛𝑦

𝑃𝑖𝑥𝑒𝑙 
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑥,𝑦,𝑛𝑥,𝑛𝑦
 

 



Stereo as an Optimization Problem 

Minimize error function: 

𝐸 𝑥, 𝑦, 𝑑 =  𝑑𝑎𝑡𝑎 𝑥, 𝑦, 𝑑(𝑥, 𝑦)

𝑃𝑖𝑥𝑒𝑙𝑠
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𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑥,𝑦,𝑛𝑥,𝑛𝑦
 

 

For example: 

smoothness(d1, d2) = min(| d1 – d2 |, S) 

max_data_term_value 

max_smoothness_term_value 

data_term_weight 



Stereo as an Optimization Problem 

Unfortunately,  

optimizing this  

error function  

is NP-Hard 

Potetz 

Minimize error function: 

𝐸 𝑥, 𝑦, 𝑑 =  𝑑𝑎𝑡𝑎 𝑥, 𝑦, 𝑑(𝑥, 𝑦)

𝑃𝑖𝑥𝑒𝑙𝑠

𝑥,𝑦

+  𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑑 𝑥, 𝑦 , 𝑑 𝑛𝑥, 𝑛𝑦

𝑃𝑖𝑥𝑒𝑙 
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑥,𝑦,𝑛𝑥,𝑛𝑦
 

 



Two Possible Algorithms 

Dynamic programming 

Graph cuts 



Two Possible Algorithms 

Dynamic programming 

Graph cuts 



Dynamic Programming Algorithm 

Simplify problem by ignoring smoothness costs  
between vertical neighbors 

𝐸 𝑥, 𝑦, 𝑑 =  𝑑𝑎𝑡𝑎 𝑥, 𝑦, 𝑑(𝑥, 𝑦)

𝑃𝑖𝑥𝑒𝑙𝑠

𝑥,𝑦

+  𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑑 𝑥, 𝑦 , 𝑑 𝑛𝑥, 𝑛𝑦

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑥,𝑦,𝑛𝑥,𝑛𝑦
 

 

Then can find optimal solution for each scanline 
independently with dynamic programming 

• plus, maintains order of pixel correspondences 



Dynamic Programming Algorithm 

Like string alignment, but our formulation will include a 
smoothness term rather than a gap penalty 

1) Compute error of prefixes 

2) Find best overall error 

3) Backtrack to find disparities 
 



Dynamic Programming Algorithm 

1) Incrementally update optimal energy E(x,d) for prefix  
if assign disparity d at pixel x 

𝐸 𝑥, 𝑦, 𝑑 = min(𝑑𝑎𝑡𝑎 𝑥, 𝑦, 𝑑 + 𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑑, 𝑑′ + 𝐸 (𝑥 − 1, 𝑦, 𝑑′)) 
d’ 

Scanline positions (x) 

P
o

ss
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 d

is
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ar
it

ie
s 

(d
) 

1 width 

0 

max_disparity 

E(x,y,d) 
Equation 11.14 in Szeliski 



Dynamic Programming Algorithm 

1) Incrementally update optimal energy E(x,d) for prefix  
if assign disparity d at pixel x 

𝐸 𝑥, 𝑦, 𝑑 = min(𝑑𝑎𝑡𝑎 𝑥, 𝑦, 𝑑 + 𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑑, 𝑑′ + 𝐸 (𝑥 − 1, 𝑦, 𝑑′)) 
d’ 
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32 

E(x,y,d) E(x-1,y,d’) 

For example, if data(7,y,2) = 1 and data(7,y,not2)=10  



Dynamic Programming Algorithm 

1) Incrementally update optimal energy E(x,d) for prefix  
if assign disparity d at pixel x 
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Dynamic Programming Algorithm 

1) Incrementally update optimal energy E(x,d) for prefix  
if assign disparity d at pixel x 

𝐸 𝑥, 𝑦, 𝑑 = min(𝑑𝑎𝑡𝑎 𝑥, 𝑦, 𝑑 + 𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑑, 𝑑′ + 𝐸 (𝑥 − 1, 𝑦, 𝑑′)) 
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For example, if data(7,y,2) = 1 and data(7,y,not2)=10  



Dynamic Programming Algorithm 

1) Incrementally update optimal energy E(x,d) for prefix  
if assign disparity d at pixel x 

𝐸 𝑥, 𝑦, 𝑑 = min(𝑑𝑎𝑡𝑎 𝑥, 𝑦, 𝑑 + 𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑑, 𝑑′ + 𝐸 (𝑥 − 1, 𝑦, 𝑑′)) 
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E(x,y,d) E(x-1,y,d’) 

For example, if data(7,y,2) = 1 and data(7,y,not2)=10  



Dynamic Programming Algorithm 

1) Incrementally update optimal energy E(x,d) for prefix  
if assign disparity d at pixel x 

𝐸 𝑥, 𝑦, 𝑑 = min(𝑑𝑎𝑡𝑎 𝑥, 𝑦, 𝑑 + 𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑑, 𝑑′ + 𝐸 (𝑥 − 1, 𝑦, 𝑑′)) 
d’ 
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E(x,y,d) E(x-1,y,d’) 

For example, if data(7,y,2) = 1 and data(7,y,not2)=10  



Dynamic Programming Algorithm 

2) Find the best alignment for entire string 
P

o
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2 4 7 8 11 13 18 19 12 12 

∞ 3 6 8 8 8 17 10 14 19 

∞ ∞ 5 6 6 14 9 11 14 15 

∞ ∞ ∞ 12 15 24 19 14 19 20 

∞ ∞ ∞ ∞ 16 32 20 17 22 23 

Scanline positions (x) 

Best error for entire string 



Dynamic Programming Algorithm 

3) Find path back through prefixes that ―supported‖ 
    the best alignment 
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2 4 7 8 11 13 18 19 12 12 

∞ 3 6 8 8 8 17 10 14 19 

∞ ∞ 5 6 6 14 9 11 14 15 

∞ ∞ ∞ 12 15 24 19 14 19 20 

∞ ∞ ∞ ∞ 16 32 20 17 22 23 

Scanline positions (x) 

d(x) = argmin(|𝑑𝑎𝑡𝑎 𝑥 + 1, 𝑦, 𝑑(𝑥 + 1) + 𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑑(𝑥 + 1), 𝑑′ + 𝐸 (𝑥, 𝑦, 𝑑′) -𝐸(𝑥 + 1, 𝑦, 𝑑(𝑥 + 1))| 
 d’ 

Find d(x-1) whose error increment “matches” forward step 



Dynamic Programming Algorithm 

Or, equivalently: 
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∞ ∞ ∞ ∞ 16 32 20 17 22 23 

Scanline positions (x) 

Find d(x-1) whose error increment “matches” forward step 

d(x-1) = argmin | 𝑑𝑎𝑡𝑎 𝑥, 𝑦, 𝑑(𝑥) + 𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑑(𝑥), 𝑑′ + 𝐸 (𝑥 − 1, 𝑦, 𝑑′)  - 𝐸 𝑥, 𝑦, 𝑑(𝑥) ) | 

d’ 



Dynamic Programming Results 



Two Possible Algorithms 

Dynamic programming 

Graph cuts 



Graph Cut Algorithm 

Build graph where: 

 Nodes represent pixels and disparities 

 Edges from pixels to disparities (based on data term) 

 Edges between neighbor pixels (smoothness term) 

Smoothness(d1, d1) 

f(Data(x, y1, d3)) 

Boykov 



Graph Cut Algorithm 

Find graph cut where: 

 Every pixel is connected to one disparity 

 Sum of cut edge weights is minimized 

This equivalent to finding global minimum of energy function 

Smoothness(d1, d1) 

Data(x, y1, d3) 

Boykov 



Graph Cut Algorithm 

Optimal solutions available for 2-label problems 

(from segmentation slides) 
Source (Label 0) 

Sink (Label 1) 

Cost to assign to 0 

Cost to assign to 1 

Cost to split nodes 

Unary Potential Edge Potential 

Cut 



Graph Cut Algorithm 

Approximation algorithms for multi-label algorithms: 

•  expansion 

• - swap  

 

Basic idea: break multi-label cut computation into 

sequence of two-label cuts 

 

Boykov 



Graph Cut Algorithm 

 expansion: add pixels to  class 



Graph Cut Algorithm 

-  swap: interchange  and  labels 



Graph Cut Algorithms 

Boykov 



Graph Cut Results 



CSE 576, Spring 2008 Stereo matching 78 

Stereo evaluation 



Scharstein and Szeliski 



CSE 576, Spring 2008 Stereo matching 80 

Stereo—best algorithms 



Stereo Summary 

Advantages: 

• cheap hardware, passive 

• works very well in non-occluded regions 

Disadvantages: 

• gets confused in texture-less regions 

• gets confused in occluded regions 

• gets confused by specular surfaces 


