Tracking

• Feature tracking
• Object tracking
Tracking

• Feature tracking
• Object tracking
Feature Tracking

• Given sequence of images
• Find feature correspondences
Applications?
Feature Tracking Example

Sea of Images
Feature Tracking Example
Tracking

• Feature tracking
• Object tracking
Object Tracking

• Given sequence of images
• Track moving foreground objects
Object Tracking

• Can we estimate the position of the object?
• Can we predict future positions?
Applications?
Applications

- Astronomy, biology, etc.
- Surveillance
- Activity analysis
- Gesture recognition
- etc.
Applications

- Astronomy, biology, etc.
- Surveillance
- Activity analysis
- Gesture recognition
- etc.

http://www.youtube.com/watch?v=SLYgvHzAm2w
Applications

• Astronomy, biology, etc.
• Surveillance
• Activity analysis
• Gesture recognition
• etc.

http://www.youtube.com/watch?v=bY8qGk45WxM
Applications

• Astronomy, biology, etc.
• Surveillance
• Activity analysis
• Gesture recognition
• etc.
Applications

• Astronomy, biology, etc.
• Surveillance
• Activity analysis
• Gesture recognition
Applications

• Astronomy, biology, etc.
• Security surveillance
• Activity analysis
• Gesture recognition
• etc.

Methods?
General Strategy

• Initialize *model* in the first frame
• Given model estimate for frame $t-1$:
 – *Predict* for frame t
 • Use *dynamics model* of how the image changes
 – *Correct* for frame t
 • Use foreground estimation in current frame to update model

Kristen Grauman
General Strategy

• Initialize *model* in the first frame

• Given model estimate for frame $t-1$:
 – *Predict* for frame t
 • Use *dynamics model* of how the image changes
 – *Correct* for frame t
 • Use *foreground estimation* in current frame to update model
Outline

• Feature tracking
• Object tracking
 – Foreground estimation
 – Model update
Foreground Estimation

Image at time t: $l(x, y, t)$

Foreground at time t: $F(x, y, t)$

How?
Background Subtraction

1. Estimate the background for time t.
2. Subtract the estimated background from the input frame.
3. Apply a threshold, Th, to the absolute difference to get the foreground mask.
Background Subtraction

Image at time t: $l(x, y, t)$

→

Foreground at time t: $F(x, y, t)$

1. Estimate the background for time t.
2. Subtract the estimated background from the input frame.
3. Apply a threshold, Th, to the absolute difference to get the foreground mask.
Background Subtraction

Image at time t: $l(x, y, t)$

Background at time t: $B(x, y, t)$

How estimate the background?
Background = Previous Frame

- Background is estimated to be the previous frame. Background subtraction equation then becomes:

\[B(x, y, t) = l(x, y, t - 1) \]

\[\Downarrow \]

\[|l(x, y, t) - l(x, y, t - 1)| > Th \]

- Depending on the object structure, speed, frame rate and global threshold, this approach may or may not be useful (usually not).
Background = Previous Frame

$Th = 25$

$Th = 50$

$Th = 100$

$Th = 200$

Slide credit: Birgi Tamosoy
Background = Mean Filter

- In this case the background is the mean of the previous n frames:

$$B(x, y, t) = \frac{1}{n} \sum_{i=0}^{n-1} l(x, y, t - i)$$

$$\Downarrow$$

$$|l(x, y, t) - \frac{1}{n} \sum_{i=0}^{n-1} l(x, y, t - i)| > Th$$

- For $n = 10$:

 Estimated Background
 Foreground Mask
Background = Mean Filter

• When won’t this work?
Background = Mean Filter

- Toyama et al. 1999
Background = Mixture Model

• Model each background pixel with a mixture of Gaussians; update parameters over time.

Adaptive Background Mixture Models for Real-Time Tracking, Chris Stauer & W.E.L. Grimson
Background = Median Filter

- Assuming that the background is more likely to appear in a scene, we can use the median of the previous n frames as the background model:

$$B(x, y, t) = \text{median}\{I(x, y, t - i)\}$$

$$\Downarrow$$

$$|I(x, y, t) - \text{median}\{I(x, y, t - i)\}| > Th \text{ where } i \in \{0, \ldots, n - 1\}.$$

- For $n = 10$:

 Estimated Background

 Foreground Mask

Slide credit: Birgi Tamersoy
Comparison

Mean

Median
Background Subtraction Result

Alyosha Efros, CMU
Background Subtraction

Advantages:
• Extremely easy to implement and use!
• All pretty fast.
• Corresponding background models need not be constant, they change over time.

Disadvantages:
• Accuracy of frame differencing depends on object speed and frame rate
• Median background model: relatively high memory requirements.
• Setting global threshold Th...

How could this approach be better?

Slide credit: Birgi Tamersoy
Discriminative Models

• Use adaptive models of both foreground and background to estimate $p(\text{foreground})$
 – Color histograms
 – Segmentation algorithms
 – etc.

• Potential problem: poor separation of foreground and background causes poor update to discriminative models
 – Drift
Outline

• Feature tracking

• Object tracking
 – Foreground estimation
 – Model update
Object Tracking

- Given Sequence of Images
- Track centers of moving foreground objects

Why isn’t foreground estimation enough?

http://www.youtube.com/watch?v=bY8qGk45WxM
Object Tracking

• Use *model* of object motion to compensate for noisy foreground estimation, handle occlusions, keep track of multiple foreground objects, etc.

http://www.youtube.com/watch?v=bY8qGk45WxM
Example Object Models

points

curves

Part-based structures

Kristen Grauman
Example Object Models

Model Update

• Continually update probabilistic parameters of the object model based on observations (foreground estimates)
Simple Example

• Measurement of a single point z_1
• Variance σ_1^2 (uncertainty σ_1)
 – Assuming Gaussian distribution

\[\hat{x}_1 = z_1 \]
\[\hat{\sigma}^2 = \sigma_1^2 \]
Simple Example

• Measurement of a single point z_1, variance σ_1^2
 – Assuming Gaussian distribution

• Best estimate of true position: $\hat{x}_1 = z_1$

• Uncertainty in best estimate: $\hat{\sigma}_1^2 = \sigma_1^2$
Simple Example

• Second measurement z_2, variance σ_2^2

• Best estimate of true position?

• Uncertainty in best estimate?
Simple Example

• Second measurement z_2, variance σ_2^2

• Best estimate of true position?

• Uncertainty in best estimate?
Simple Example

• Best estimate of true position: (weighted average)

\[
\hat{x}_2 = \frac{\frac{1}{\sigma_1^2} z_1 + \frac{1}{\sigma_2^2} z_2}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}
\]

\[= \hat{x}_1 + \frac{\hat{\sigma}_1^2}{\hat{\sigma}_1^2 + \sigma_2^2} \left(z_2 - \hat{x}_1 \right) \]

• Uncertainty in best estimate

\[
\hat{\sigma}_2^2 = \frac{1}{\frac{1}{\hat{\sigma}_1^2} + \frac{1}{\sigma_2^2}}
\]
Possible Update Strategy

• Online Weighted Average
 – Combine successive measurements into constantly-improving estimate
 – Uncertainty decreases over time
 – Only need to keep current measurement, last estimate of state and uncertainty
Kalman Filter

• Assume measurement errors are Gaussian
• Assume model parameters are Gaussian
• Assume model is linear

• Kalman filter provides optimal update strategy

Rudolf Emil Kalman
Kalman Filter Terminology

• System model:

\[x_k = \Phi_{k-1} x_{k-1} + \xi_{k-1} \]

• \(\hat{x}_k \) is estimate of state \(\hat{x} \) with covariance \(P \)
• The matrix \(\Phi_k \) is state transition matrix
• The vector \(\xi_k \) represents additive noise, assumed to have covariance \(Q \)
Kalman Filter Terminology

• Measurement model:

\[z_k = H_k x_k + \mu_k \]

• Matrix \(H \) is measurement matrix

• The vector \(\mu \) is measurement noise, assumed to have covariance \(R \)
Kalman Filter Update

• Predict new state

\[x'_k = \Phi_{k-1} \hat{x}_{k-1} \]

\[P'_k = \Phi_{k-1} P_{k-1} \Phi_{k-1}^T + Q_{k-1} \]

• Correct model based on new measurements

\[\hat{x}_k = x'_k + K_k (z_k - H_k x'_k) \]

\[P_k = (I - K_k H_k) P'_k \]
The Prediction-Correction-Cycle

\[
\overline{bel}(x_t) = \begin{cases}
\mu_t &= a_t \mu_{t-1} + b_t u_t \\
\sigma_t^2 &= a_t^2 \sigma_{t-1}^2 + \sigma_{\text{act},t}^2
\end{cases}
\]

\[
\overline{bel}(x_t) = \begin{cases}
\mu_t &= A_t \mu_{t-1} + B_t u_t \\
\Sigma_t &= A_t \Sigma_{t-1} A_t^T + R_t
\end{cases}
\]
The Prediction-Correction-Cycle

\[\text{bel}(x_i) = \begin{cases} \mu_i = \bar{\mu}_i + K_i (z_i - \bar{\mu}_i), \\ \sigma_i^2 = (1 - K_i) \bar{\sigma}_i^2 \end{cases}, \quad K_i = \frac{\bar{\sigma}_i^2}{\bar{\sigma}_i^2 + \sigma_{\text{obst}}^2} \]

\[\text{bel}(x_i) = \begin{cases} \mu_i = \bar{\mu}_i + K_i (z_i - C_i \bar{\mu}_i), \\ \Sigma_i = (I - K_i C_i) \bar{\Sigma}_i \end{cases}, \quad K_i = \bar{\Sigma}_i C_i^T (C_i \bar{\Sigma}_i C_i^T + Q_i)^{-1} \]
The Prediction-Correction-Cycle

\[
\text{bel}(x_t) = \begin{cases}
\mu_t = \bar{\mu}_t + K_t(z_t - \bar{\mu}_t), \\
\sigma^2 = (1 - K_t)\bar{\sigma}^2_t, \\
K_t = \frac{\bar{\sigma}^2_t}{\sigma^2_t + \sigma^2_{\text{obs}}}
\end{cases}, \quad \Sigma_t = (I - K_tC_t)\Sigma_t \\
\text{bel}(x_t) = \begin{cases}
\mu_t = \bar{\mu}_t + K_t(z_t - C_t\bar{\mu}_t), \\
\Sigma_t = (I - K_tC_t)\Sigma_t, \\
K_t = \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + Q_t)^{-1}
\end{cases}
\]

\[
\overline{\text{bel}}(x_t) = \begin{cases}
\bar{\mu}_t = a_t\mu_{t-1} + b_tu_t, \\
\bar{\sigma}^2_t = a_t^2\sigma^2_t + \sigma^2_{\text{act},t}
\end{cases}, \quad \overline{\Sigma}_t = A_t\Sigma_{t-1}A_t^T + R_t
\]

Thrun & Košecká
Kalman Filter Summary

• *Highly efficient*: Polynomial in measurement dimensionality k and state dimensionality n:

$$O(k^{2.376} + n^2)$$

• *Optimal for linear Gaussian systems!*
Kalman Filter

• Problems:

 What if model of motion is not linear?

 What if it is not even parametric?
Particle Filter

• Basic idea: model is represented by a population of particles \((X_t)\)
Particle Filter Algorithm

Initialization:
\[X_0 \leftarrow n \text{ particles } x_0^{[i]} \sim p(x_0) \]

\[
\text{particleFilters}(X_{t-1}) \{ \\
\quad \text{for } i=1 \text{ to } n \\
\quad \quad x_t^{[i]} \sim p(x_t | x_{t-1}^{[i]}) \quad \text{(prediction)} \\
\quad \quad w_t^{[i]} = p(z_t | x_t^{[i]}) \quad \text{(importance weights)} \\
\quad \text{endfor} \\
\quad \text{for } i=1 \text{ to } n \\
\quad \quad \text{include } x_t^{[i]} \text{ in } X_t \text{ with probability } \propto w_t^{[i]} \quad \text{(resampling)} \\
\quad \text{endfor} \\
\}

Thrun & Košecká
Particle Filter Example

http://www.youtube.com/watch?v=j5h95g_ifCk
Particle Filter Example

http://www.youtube.com/watch?v=wCMk-pHzScE
Particle Filter Example

http://www.youtube.com/watch?v=iDHYkZ_Fors&list=TLctNoIqoeYKI_Mjy-26deFuPWKddjMI4P
Kalman Filter

• Estimates state of a system
 – Position
 – Velocity
 – Many other continuous state variables possible
• KF maintains
 – Mean vector for the state
 – Covariance matrix of state uncertainty
• Implements
 – Time update = prediction
 – Measurement update
• Standard Kalman filter is linear-Gaussian
 – Linear system dynamics, linear sensor model
 – Additive Gaussian noise (independent)
 – Nonlinear extensions: extended KF, unscented KF: linearize
Particle Filter

- Estimates state of a system
 - Position
 - Velocity
 - Many other continuous state variables possible
- KF maintains
 - Mean vector for the state
 - Covariance matrix of state uncertainty
- Implements
 - Time update = prediction
 - Measurement update
- Standard Kalman filter is linear-Gaussian
 - Linear system dynamics, linear sensor model
 - Additive Gaussian noise (independent)
 - Nonlinear extensions: extended KF, unscented KF: linearize

and discrete
set of particles (example states)
fully nonlinear
easy to implement

Thrun & Košecká
Summary

• Feature tracking
• Object tracking
 – Foreground estimation
 – Model update
 • Kalman filter
 • Particle filter