Optical Flow

CS 429 Princeton University

Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, and S. Lazebnik

Last Two Lectures: Images

Infer camera and scene geometry from a set of images

Next Two Lectures: Video

Infer camera and scene geometry from a time-varying sequence of images (video)

Next Two Lectures: Video

Infer camera and scene geometry from a time-varying sequence of images (video)

This Lecture: Estimating Motion in Video

http://www.youtube.com/watch?v=JILkkom6tWw

Applications?

Applications

- Estimating depth
- Tracking object motion
- Determining camera motion
- Segmenting objects based on motion cues
- Video compression
- Robot navigation
- Studying dynamical models
- Recognizing events and activities
- Human computer interaction
- Facial animation
- Video filters

Estimating Depth

- The motion field is the projection of the 3D scene motion into the image
- Length of motion vectors is inversely proportional to depth Z of 3D point

Sequence of images in video

Estimating Depth

Length of motion vectors is inversely proportional to depth Z of 3D point

Figure 1.2: Two images taken from a helicopter flying through a canyon and the computed optical flow field.

Figure from Michael Black, Ph.D. Thesis

points closer to the camera move more quickly across the image plane

Tracking objects

Motion field reveals movement of objects

+	+	+	+	+	+	+	+	+	•	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	÷	+	+	+	÷	+	•	+	+	•	٠	+	÷	+
		+												
+	+	+	+	t		*	*	+	+	+-	+	+	+	+
		+												
+	+	+	+	1	*	+	+-	+-	+-	+	-	1	+	+
•	+	+	+	1	*	+	+	+	+-	+**	-	1	+	+
+	+	+	+	+	*	+	+	+	+-	*	-	1	+	+
		+												
+	+	•	+	+	+	•	+	+	+-	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	•	+
•	+	+	+	+	+	+	+		+	+	+		+	+
		+												
		+												

Tomas Izo

Estimating camera motion

Motion field reveals movement of camera

Zoom out

Zoom in

Pan right to left

Segmenting objects based on parallax

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html

Outline

Motivation Algorithms ← Evaluation Applications

Motion estimation algorithms?

Sequence of images in video

Motion estimation algorithms

- Feature-based methods
- Pixel-based methods

Sequence of images in video

Feature-based Motion Estimation

- Detect features in images
- Find correspondences between frames
 - Similar to mosaicing, but can track features based on continuous motion (more on this next time)

Sequence of images in video

Feature-Based Motion Estimation

http://www.youtube.com/watch?v=V4r2HXGA8jw

Feature-based Motion Estimation

- Pros:
 - Provides robust tracking of some points
 - Suitable for large motions
- Cons:
 - Sparse motion field

Pixel-based Motion Estimation

Directly recover image motion at each pixel from spatio-temporal image brightness variations

Pixel-based Motion Estimation

- Note: motion of pixels (optical flow) may not match motion in camera or scene
- Optical flow can be caused by scene motion, camera motion, lighting changes, etc.
- Or, may have no optical flow even when scene is changing

Figure from Horn book

Problem definition: optical flow

Goal: estimate pixel motion from image H to image I

Problem definition: optical flow

Goal: estimate pixel motion from image H to image I **General strategy:** for blocks of pixels in H, look for pixels in I that are both nearby and similar-looking

Problem definition: Optical flow

Goal: estimate pixel motion from image H to image I **General strategy:** for blocks of pixels in H, look for pixels in I that are both nearby and similar-looking

- Key assumptions
 - **small motion**: points do not move very far
 - color constancy: a point in H looks the same in I
 - coherent motion: nearby points move together

Optical flow constraints (grayscale images)

Let's look at these constraints more closely

Brightness constancy: Q: what's the equation?

$$H(x, y) = I(x+u, y+v)$$

Small motion:

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$
$$\approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

Optical flow equation

Combining these two equations

$$0 = I(x + u, y + v) - H(x, y) \qquad \text{shorthand:} \quad I_x = \frac{\partial I}{\partial x}$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

 $0 = I_t + \nabla I \cdot [u \ v]$

Q: how many unknowns and equations per pixel?

Intuitively, what does this ambiguity mean?

The aperture problem

The aperture problem

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

The barber pole illusion

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm

- How to get more equations for a pixel?
- **Spatial coherence constraint:** pretend the pixel's neighbors have the same (u,v)

Figure 1.7: Spatial coherence assumption. Neighboring points in the image are assumed to belong to the same surface in the scene.

- How to get more equations for a pixel?
- **Spatial coherence constraint:** pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix}$$

$$A \quad d = b$$

25x2 2x1 25x1

Now we have more equations than unknowns

$$\begin{array}{ccc} A & d = b \\ _{25\times2} & _{2\times1} & _{25\times1} \end{array} \longrightarrow \text{ minimize } \|Ad - b\|^2$$

Solve least squares problem

• minimum least squares solution given by solution (in d) of:

$$(A^T A) \underset{2 \times 2}{d} = A^T b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

• The summations are over all pixels in the K x K window

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

When is this solvable robustly?

- **A^TA** should be invertible
- **A^TA** should not be too small
 - eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- **A^TA** should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

Where have we seen this matrix before?

Edge:

- gradients very large or very small
- large λ_1 , small λ_2

Computing Optical Flow

Low texture region:

- gradients have small magnitude
- small λ_1 , small λ_2

Computing Optical Flow

High texture region:

- gradients are different, large magnitudes
- large λ_1 , large λ_2

Computing Optical Flow

Still must choose window size:

- Too big: confused by multiple motions
- Too small: only get motion perpendicular to edge

Problem:

 Assumption that optical flow is constant over neighborhood is not always good

Improvement 1:

• Use large neighborhood, but weight pixels higher if closer to center

 $\mathbf{A} \rightarrow \mathbf{W}\mathbf{A}$ $\mathbf{b} \rightarrow \mathbf{W}\mathbf{b}$

$$\mathbf{v} = -(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\Rightarrow \mathbf{v}_{w} = -(\mathbf{A}^{\mathrm{T}}\mathbf{W}^{2}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{W}^{2}\mathbf{b}$$

Improvement 2:

- Use affine model of motion (instead of translation)
- Must solve for 6 unknowns per pixel instead of 2

Translation:
$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
Affine:
$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Problem:

- Small motion assumption not always true
- i.e., differential approximation not good for large motions

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

Improvement 1: iteration

Add higher order terms back in and solve with iterative algorithm

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$= I(x, y) + I_x u + I_y v + \text{higher order terms} - H(x, y)$$

This is a polynomial root finding problem

- Can solve using **Newton's method**
 - Also known as **Newton-Raphson** method
- Approach so far does one iteration of Newton's method
 - Better results are obtained via more iterations
- Warp image based on estimated flow after each iteration

Improvement 2: multiresolution

• Use large-scale gradients in early iterations, smaller-scale in late iterations (coarse-to-fine)

Improvement 2: multiresolution

Gaussian pyramid of image I

Gaussian pyramid of image H

Gaussian pyramid of image H

Gaussian pyramid of image I

Computing Optical Flow: Lucas-Kanade

Coarse-to-fine, iterative algorithm:

- 1. Set σ = large (e.g. 10 pixels)
- 2. Set $I' \leftarrow I_1$
- 3. Set $\mathbf{v} \leftarrow 0$
- 4. Repeat while SSD(I', I_2) > τ
 - **1. v** += Optical flow($I' \rightarrow I_2$)

2. $I' \leftarrow Warp(I_1, \mathbf{v})$

5. After *n* iterations, set σ = small (e.g. 1 pixels)

Outline

Motivation Algorithms Evaluation ← Applications

Optical flow benchmarks

<u>http://vision.middlebury.edu/flow/</u>

Ground Truth

Optical flow benchmarks

http://vision.middlebury.edu/flow/

Lucas-Kanade flow

Ground Truth

Optical flow benchmarks

<u>http://vision.middlebury.edu/flow/</u>

Best-in-class alg (as of 2/26/12)

Ground Truth

Outline

Motivation Algorithms Evaluation Applications

Applications

- Estimating depth
- Tracking object motion
- Determining camera motion
- Segmenting objects based on motion cues
- Video compression
- Robot navigation
- Studying dynamical models
- Recognizing events and activities
- Human computer interaction
- Facial animation
- Video filters

Application: video compression

Encode some frames (p-frames) based on motion of blocks in others (i-frames)

Application: robot navigation

Scene understanding, obstacle avoidance, etc.

Application: action recognition

Application: human-computer interaction

Track people (more on this next time)

http://www.youtube.com/watch?v=TbJrc6QCeU0&feature=related

Application: studying dynamical systems

Measuring fluid flow

Application: facial animation

http://www.fxguide.com/article333.html

Application: video filters

Track pixels so that can provide coherence in brush strokes when making video appear painted by an artist

http://www.fxguide.com/article333.html

Optical Flow Summary

- Problem:
 - Solve for motion field by minimizing differences in intensity between corresponding pixels
- Techniques:
 - Differential approximation, windows
 - Weighting, iteration, multiresolution
- Pros and cons:
 - + Dense motion field
 - -- Works well only for small motions
 - -- Sensitive to appearance variations

Lots of applications