Optical Flow

CS 429
Princeton University

Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, and S. Lazebnik
Last Two Lectures: Images

Infer camera and scene geometry from a set of images
Next Two Lectures: Video

Infer camera and scene geometry from a time-varying sequence of images (video)
Next Two Lectures: Video

Infer camera and scene geometry from a time-varying sequence of images (video)
This Lecture: Estimating Motion in Video

http://www.youtube.com/watch?v=JILkkom6tWw
Applications?
Applications

- Estimating depth
- Tracking object motion
- Determining camera motion
- Segmenting objects based on motion cues
- Video compression
- Robot navigation
- Studying dynamical models
- Recognizing events and activities
- Human computer interaction
- Facial animation
- Video filters
Estimating Depth

- The motion field is the projection of the 3D scene motion into the image
- Length of motion vectors is inversely proportional to depth Z of 3D point
Length of motion vectors is inversely proportional to depth Z of 3D point.
Tracking objects

Motion field reveals movement of objects
Estimating camera motion

Motion field reveals movement of camera

- Zoom out
- Zoom in
- Pan right to left
Segmenting objects based on parallax

http://psych.hanover.edu/KRANTZ/MotionParallax/MotionParallax.html
Outline

Motivation

Algorithms

Evaluation

Applications
Motion estimation algorithms?

Sequence of images in video

Motion field
Motion estimation algorithms

- Feature-based methods
- Pixel-based methods

Sequence of images in video

Motion field
Feature-based Motion Estimation

- Detect features in images
- Find correspondences between frames
 - Similar to mosaicing, but can track features based on continuous motion (more on this next time)

Sequence of images in video

Motion field
Feature-Based Motion Estimation

http://www.youtube.com/watch?v=V4r2HXGA8jw
Feature-based Motion Estimation

• Pros:
 • Provides robust tracking of some points
 • Suitable for large motions

• Cons:
 • Sparse motion field
Pixel-based Motion Estimation

Directly recover image motion at each pixel from spatio-temporal image brightness variations

Figure by Michael Black
Pixel-based Motion Estimation

- Note: motion of pixels (optical flow) may not match motion in camera or scene
- Optical flow can be caused by scene motion, camera motion, lighting changes, etc.
- Or, may have no optical flow even when scene is changing

Figure from Horn book
Problem definition: optical flow

Goal: estimate pixel motion from image H to image I

$H(x, y)$

$I(x, y)$
Problem definition: optical flow

Goal: estimate pixel motion from image H to image I

General strategy: for blocks of pixels in H, look for pixels in I that are both nearby and similar-looking
Problem definition: Optical flow

Goal: estimate pixel motion from image H to image I

General strategy: for blocks of pixels in H, look for pixels in I that are both nearby and similar-looking

- **Key assumptions**
 - **small motion:** points do not move very far
 - **color constancy:** a point in H looks the same in I
 - **coherent motion:** nearby points move together
Optical flow constraints (grayscale images)

Let's look at these constraints more closely.

Brightness constancy: Q: what's the equation?

\[H(x, y) = I(x + u, y + v) \]

Small motion:

\[I(x + u, y + v) = I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \text{higher order terms} \]

\[\approx I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v \]
Optical flow equation

Combining these two equations

\[0 = I(x + u, y + v) - H(x, y) \]

\[\approx I(x, y) + I_x u + I_y v - H(x, y) \]

\[\approx (I(x, y) - H(x, y)) + I_x u + I_y v \]

\[\approx I_t + I_x u + I_y v \]

\[\approx I_t + \nabla I \cdot [u \ v] \]

shorthand: \(I_x = \frac{\partial I}{\partial x} \)
Optical flow equation

\[0 = I_t + \nabla I \cdot [u \ v] \]

Q: how many unknowns and equations per pixel?

Intuitively, what does this ambiguity mean?
The aperture problem

Perceived motion
The aperture problem

Actual motion
The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
The barber pole illusion

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm
Computing Optical Flow

- How to get more equations for a pixel?
- **Spatial coherence constraint:** pretend the pixel’s neighbors have the same (u,v)

![Diagram](image.png)

Figure 1.7: Spatial coherence assumption. Neighboring points in the image are assumed to belong to the same surface in the scene.
Computing Optical Flow

• How to get more equations for a pixel?

• **Spatial coherence constraint:** pretend the pixel’s neighbors have the same \((u,v)\)

 • If we use a 5x5 window, that gives us 25 equations per pixel

\[
0 = I_t(p_i) + \nabla I(p_i) \cdot [u \ v]
\]

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix} = -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]

\[
A \ d = b
\]

\[
25 \times 2 \quad 2 \times 1 \quad 25 \times 1
\]
Computing Optical Flow

Now we have more equations than unknowns

\[
\begin{bmatrix}
A & d
\end{bmatrix}
\begin{bmatrix}
25x2 \\
2x1 \\
25x1
\end{bmatrix}
\rightarrow
\text{minimize } \|Ad - b\|^2
\]

Solve least squares problem

- minimum least squares solution given by solution (in d) of:

\[
\begin{bmatrix}
A^T A
\end{bmatrix}
\begin{bmatrix}
d
\end{bmatrix}
\begin{bmatrix}
2x2 \\
2x1 \\
2x1
\end{bmatrix}
= \begin{bmatrix}
A^T b
\end{bmatrix}
\]

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\[
A^T A
\]

\[
A^T b
\]

- The summations are over all pixels in the K x K window
Computing Optical Flow

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A$$ \hspace{1cm} $$A^T b$$

When is this solvable robustly?

- $A^T A$ should be invertible
- $A^T A$ should not be too small
 - eigenvalues λ_1 and λ_2 of $A^T A$ should not be too small
- $A^T A$ should be well-conditioned
 - λ_1 / λ_2 should not be too large ($\lambda_1 = \text{larger eigenvalue}$)
Computing Optical Flow

\[
\begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{bmatrix}
\]

\[A^T A\]

\[A^T b\]

Where have we seen this matrix before?
Computing Optical Flow

Edge:

- gradients very large or very small
- large λ_1, small λ_2
Computing Optical Flow

Low texture region:
- gradients have small magnitude
- small λ_1, small λ_2
Computing Optical Flow

High texture region:
- gradients are different, large magnitudes
- large λ_1, large λ_2
Computing Optical Flow

Still must choose window size:

Too big:
confused by multiple motions

Too small:
only get motion perpendicular to edge
Computing Optical Flow: Improvements

Problem:

- Assumption that optical flow is constant over neighborhood is not always good
Computing Optical Flow: Improvements

Improvement 1:

- Use large neighborhood, but weight pixels higher if closer to center

\[A \rightarrow WA \]
\[b \rightarrow Wb \]

\[\mathbf{v} = - (A^T A)^{-1} A^T b \]

\[\Rightarrow \mathbf{v}_w = - (A^T W^2 A)^{-1} A^T W^2 b \]
Computing Optical Flow: Improvements

Improvement 2:

- Use affine model of motion (instead of translation)
- Must solve for 6 unknowns per pixel instead of 2

Translation:
\[
\begin{bmatrix}
 x_2 \\
y_2
\end{bmatrix} = \begin{bmatrix}
x_1 \\
y_1
\end{bmatrix} + \begin{bmatrix}
t_x \\
t_y
\end{bmatrix}
\]

Affine:
\[
\begin{bmatrix}
x_2 \\
y_2
\end{bmatrix} = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \begin{bmatrix}
x_1 \\
y_1
\end{bmatrix} + \begin{bmatrix}
t_x \\
t_y
\end{bmatrix}
\]

Translation:
\[
\begin{bmatrix}
x_2 \\
y_2
\end{bmatrix} = \begin{bmatrix}
x_1 \\
y_1
\end{bmatrix} + \begin{bmatrix}
t_x \\
t_y
\end{bmatrix}
\]

Affine:
\[
\begin{bmatrix}
x_2 \\
y_2
\end{bmatrix} = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \begin{bmatrix}
x_1 \\
y_1
\end{bmatrix} + \begin{bmatrix}
t_x \\
t_y
\end{bmatrix}
\]
Computing Optical Flow: Improvements

Problem:

• Small motion assumption not always true
• i.e., differential approximation not good for large motions

\[0 = I(x + u, y + v) - H(x, y) \]

\[\approx I(x, y) + I_x u + I_y v - H(x, y) \]
Computing Optical Flow: Improvements

Improvement 1: iteration

Add higher order terms back in and solve with iterative algorithm

\[0 = I(x + u, y + v) - H(x, y) \]
\[\approx I(x, y) + I_x u + I_y v - H(x, y) \]
\[= I(x, y) + I_x u + I_y v + \text{higher order terms} - H(x, y) \]

This is a polynomial root finding problem

- Can solve using **Newton’s method**
 - Also known as **Newton-Raphson** method
- Approach so far does one iteration of Newton’s method
 - Better results are obtained via more iterations
- Warp image based on estimated flow after each iteration
Improvement 2: multiresolution

- Use large-scale gradients in early iterations, smaller-scale in late iterations (coarse-to-fine)
Computing Optical Flow: Improvements

Improvement 2: multiresolution

Gaussian pyramid of image H

Gaussian pyramid of image I
Computing Optical Flow: Improvements

Improvement 2: multiresolution

Gaussian pyramid of image H

run iterative L-K

warp & upsample

run iterative L-K

Gaussian pyramid of image I

image H

image I
Computing Optical Flow: Lucas-Kanade

Coarse-to-fine, iterative algorithm:

1. Set $\sigma =$ large (e.g. 10 pixels)
2. Set $I' \leftarrow I_1$
3. Set $v \leftarrow 0$
4. Repeat while $\text{SSD}(I', I_2) > \tau$
 1. $v += \text{Optical flow}(I' \rightarrow I_2)$
 2. $I' \leftarrow \text{Warp}(I_1, v)$
5. After n iterations,
 set $\sigma =$ small (e.g. 1 pixels)
Outline

Motivation
Algorithms
Evaluation
Applications
Evaluation of Optical Flow Algorithms
Evaluation of Optical Flow Algorithms

Optical flow benchmarks

- http://vision.middlebury.edu/flow/

Ground Truth

Color encoding of flow vectors
Evaluation of Optical Flow Algorithms

Optical flow benchmarks

- http://vision.middlebury.edu/flow/

Lucas-Kanade flow

Ground Truth

Color encoding of flow vectors
Evaluation of Optical Flow Algorithms

Optical flow benchmarks

• http://vision.middlebury.edu/flow/

Best-in-class alg (as of 2/26/12) Ground Truth

Color encoding of flow vectors
Outline

Motivation
Algorithms
Evaluation
Applications
Applications

• Estimating depth
• Tracking object motion
• Determining camera motion
• Segmenting objects based on motion cues
• Video compression
• Robot navigation
• Studying dynamical models
• Recognizing events and activities
• Human computer interaction
• Facial animation
• Video filters
Application: video compression

Encode some frames (p-frames) based on motion of blocks in others (i-frames)

http://vsr.informatik.tu-chemnitz.de/~jan/MPEG/HTML/motion.gif
Application: robot navigation

Scene understanding, obstacle avoidance, etc.
Application: action recognition
Application: human-computer interaction

Track people (more on this next time)

http://www.youtube.com/watch?v=TbJrc6QCeU0&feature=related
Application: studying dynamical systems
Measuring fluid flow
Application: facial animation

Universal Capture

- Markerless capture of actor’s performance

http://www.fxguide.com/article333.html
Application: video filters

Track pixels so that can provide coherence in brush strokes when making video appear painted by an artist

http://www.fxguide.com/article333.html
Optical Flow Summary

• Problem:
 • Solve for motion field by minimizing differences in intensity between corresponding pixels

• Techniques:
 • Differential approximation, windows
 • Weighting, iteration, multiresolution

• Pros and cons:
 + Dense motion field
 -- Works well only for small motions
 -- Sensitive to appearance variations

Lots of applications