Camera Geometry II

COS 429 Princeton University

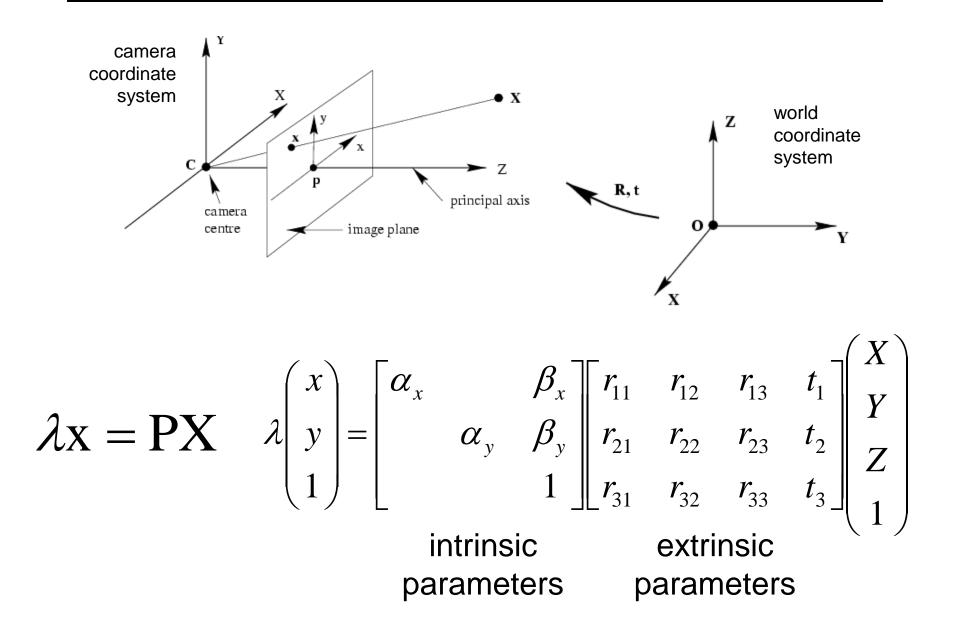
Outline

Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence Application: structure from motion revisited

Outline

Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence Application: structure from motion revisited

Review: Camera projection matrix



Review: Camera parameters

- Intrinsic parameters
 - Image center (p_x, p_y)
 - Focal length (f)
 - Pixel magnification $(m_{x'}, m_{y'})$
 - Skew (non-rectangular pixels)
 - Radial distortion

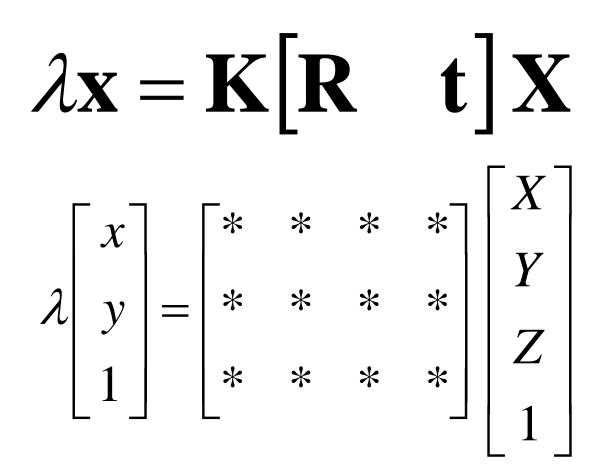
$$\mathbf{K} = \begin{bmatrix} m_x & & \\ & m_y & \\ & & 1 \end{bmatrix} \begin{bmatrix} f & p_x \\ & f & p_y \\ & & 1 \end{bmatrix} = \begin{bmatrix} \alpha_x & & \beta_x \\ & \alpha_y & \beta_y \\ & & 1 \end{bmatrix}$$

 $\mathbf{P} = \mathbf{K} |\mathbf{R} \mathbf{t}|$

Review: Camera parameters

- Intrinsic parameters
 - Principal point coordinates $\mathbf{P} = \mathbf{K} | \mathbf{R}$
 - Focal length
 - Pixel magnification
 - Skew (non-rectangular pixels)
 - Radial distortion
- Extrinsic parameters
 - Rotation (R) and translation (t) relative to world coordinate system

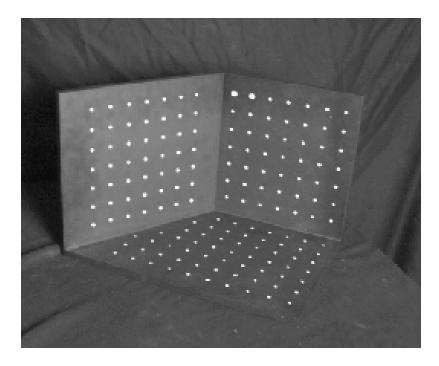
Review: Camera calibration

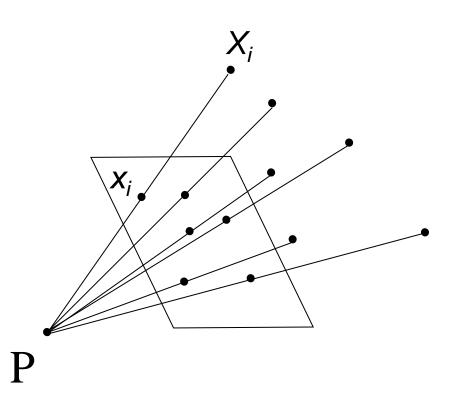


Source: D. Hoiem

Review: Camera calibration

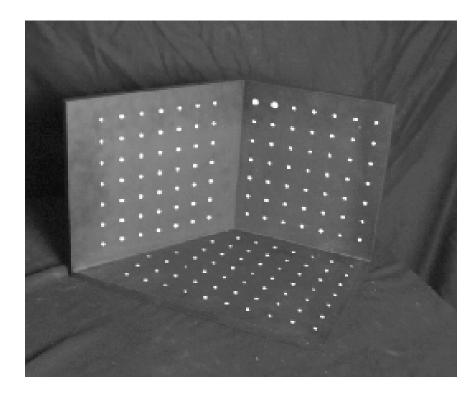
 Given *n* points with known 3D coordinates X_i and known image projections x_i, estimate the camera parameters





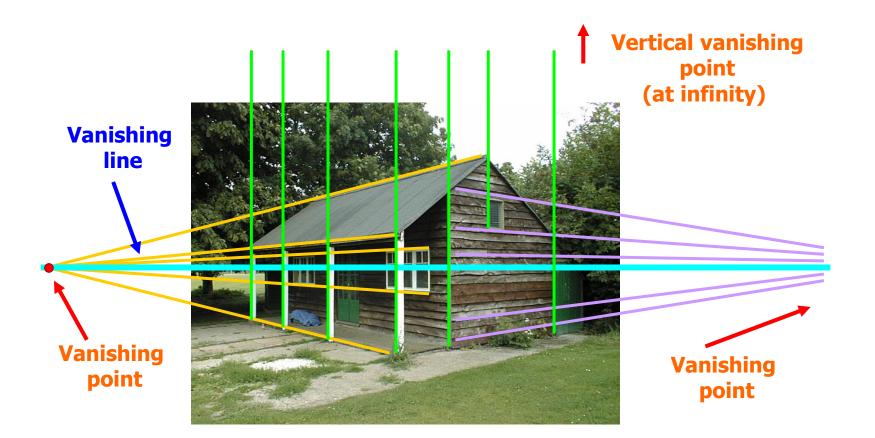
Camera calibration

- What if don't know correspondences?
- Can you determine the camera intrinsic parameters (focal length, center) or extrinsic parameters (rotation, translation)?



Camera calibration

• Let's see what we can get from vanishing points



Slide from Efros, Photo from Criminisi

Outline

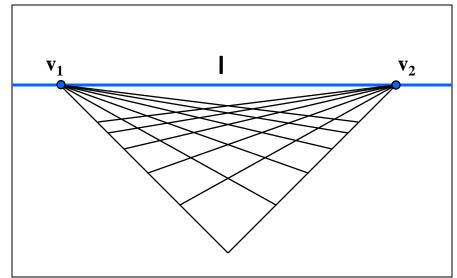
Projective geometry

Vanishing points

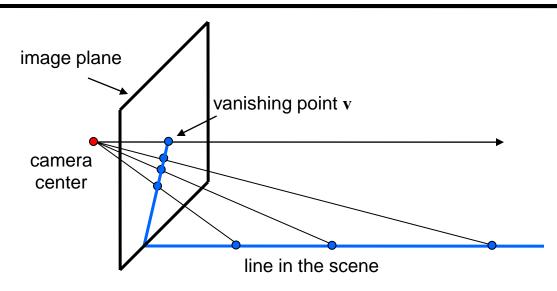
Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence Application: structure from motion revisited

Review: Vanishing Points

- Any set of parallel lines on a plane define a vanishing point
- The union of all of these vanishing points is the *horizon line*
 - also called vanishing line
- Different planes (can) define different vanishing lines

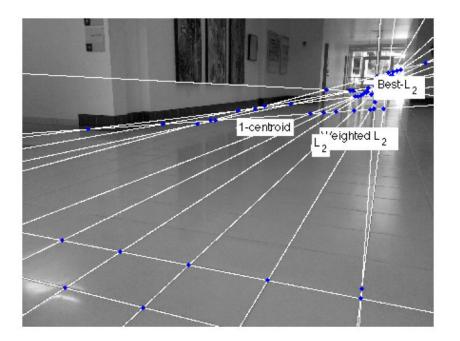


Review: Vanishing points

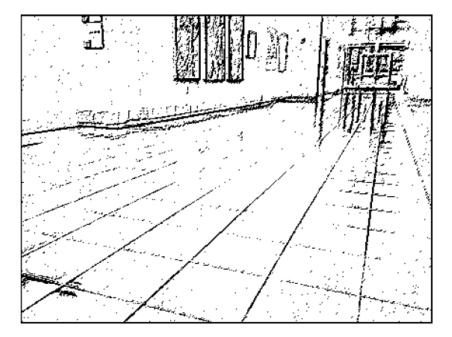


All lines having the same direction share the same vanishing point

How can we find lines in an image?



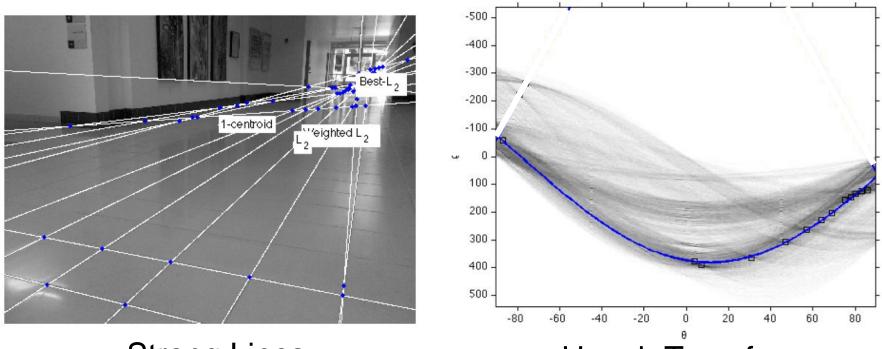
Edge detection



Edges

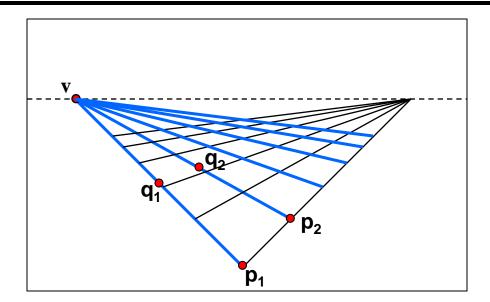
Papusha & Ho

Edge detection + Hough transform

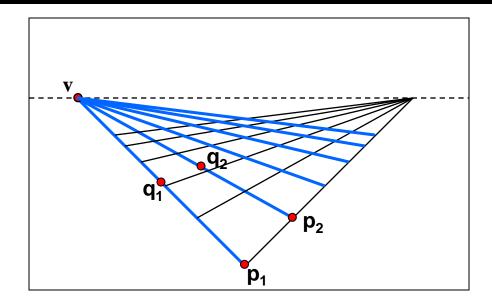


Strong Lines

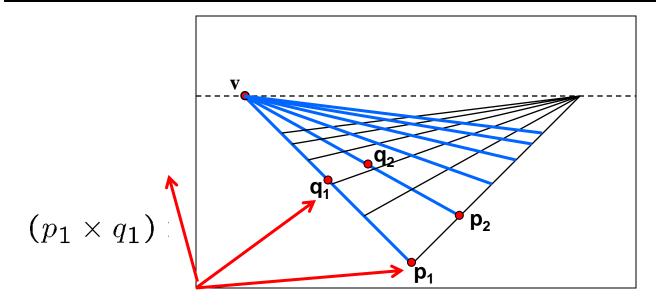
Hough Transform



For a set of parallel lines, how can we find where they intersect?



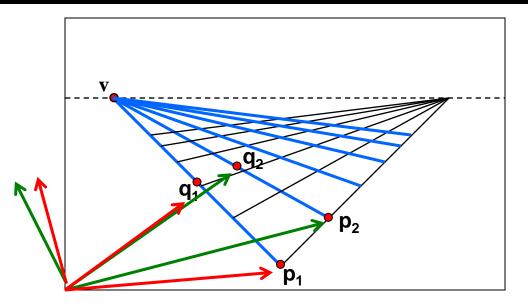
Intersect p_1q_1 with p_2q_2 $v = (p_1 \times q_1) \times (p_2 \times q_2)$



Intersect p_1q_1 with p_2q_2 $v \neq (p_1 \times q_1) \times (p_2 \times q_2)$



Intersect p_1q_1 with p_2q_2 $v = (p_1 \times q_1) \times (p_2 \times q_2)$

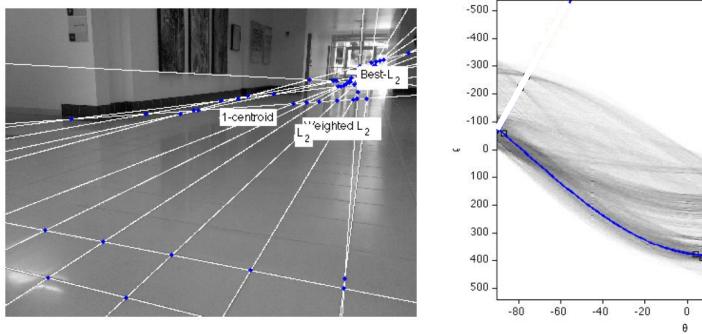


Intersect p_1q_1 with p_2q_2 $v = (p_1 \times q_1) \times (p_2 \times q_2)$

Least squares version

• Better to use more than two lines and compute the "closest" point of intersection

Alternative: vanishing points can be extracted directly from Hough transform (fit sine curves)



Strong Lines

Hough Transform

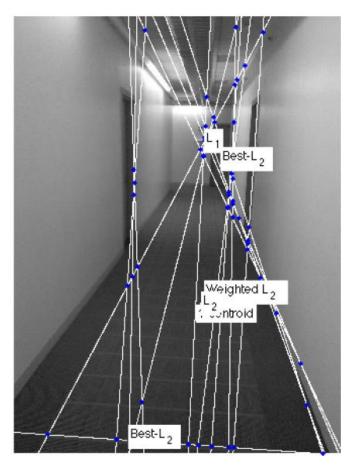
20

40

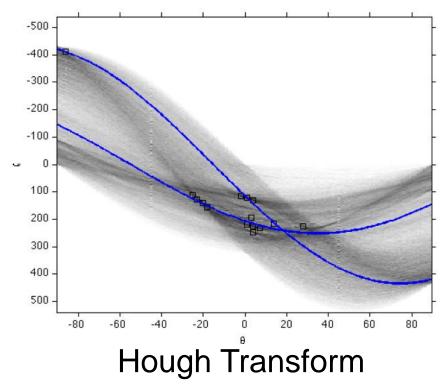
60

80

Vanishing points can be extracted directly from Hough transform (fit sine curves)



Strong Lines



Papusha & Ho

Outline

Projective geometry

Vanishing points

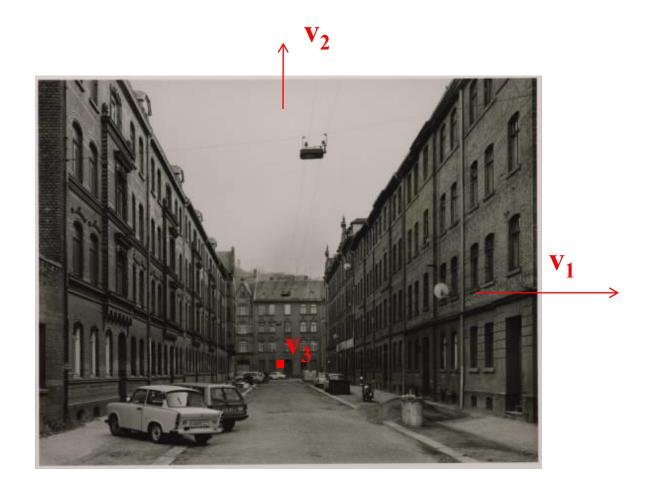
Application: camera calibration

Application: single-view metrology

- Epipolar geometry
 - Application: stereo correspondence
 - Application: structure from motion revisited

Calibration from vanishing points

• What camera parameters can we calibrate using three orthogonal vanishing directions (points)?



Calibration from vanishing points

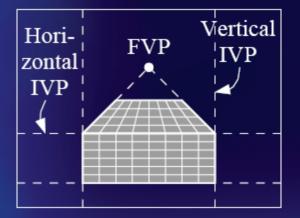
• Let us align the world coordinate system with three orthogonal vanishing directions in the scene:

$$\mathbf{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \lambda \mathbf{v}_{i} = \mathbf{K} \begin{bmatrix} \mathbf{R} \mid \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{e}_{i} \\ 0 \end{bmatrix} = \mathbf{K} \mathbf{R} \mathbf{e}_{i}$$
$$\mathbf{e}_{i} = \lambda \mathbf{R}^{T} \mathbf{K}^{-1} \mathbf{v}_{i}, \quad \mathbf{e}_{i}^{T} \mathbf{e}_{j} = \mathbf{0}$$

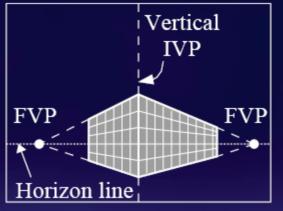
$$\mathbf{v}_i^T \mathbf{K}^{-T} \mathbf{R} \mathbf{R}^T \mathbf{K}^{-1} \mathbf{v}_j = \mathbf{v}_i^T \mathbf{K}^{-T} \mathbf{K}^{-1} \mathbf{v}_j = 0$$

 Each pair of vanishing points gives us a constraint on the focal length and principal point

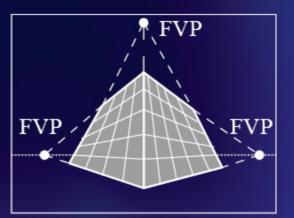
Intrinsic calibration from vanishing points



1 finite vanishing point,
 2 infinite vanishing points

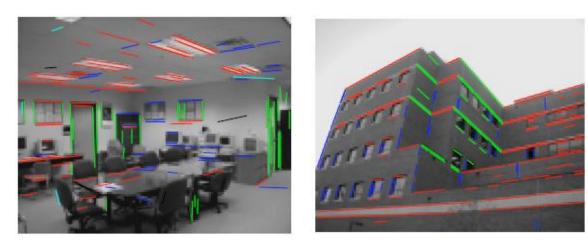


2 finite vanishing points,1 infinite vanishing point



3 finite vanishing points

Cannot recover focal length, image center is the finite vanishing point



Can solve for focal length, image center

Rotation from vanishing points

$$\lambda \mathbf{v}_{i} = \mathbf{K} \begin{bmatrix} \mathbf{R} \mid \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{e}_{i} \\ 0 \end{bmatrix} = \mathbf{K} \mathbf{R} \mathbf{e}_{i}$$
$$\lambda \mathbf{K}^{-1} \mathbf{v}_{1} = \mathbf{R} \mathbf{e}_{1} = \begin{bmatrix} \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \mathbf{r}_{1}$$

Thus, $\lambda \mathbf{K}^{-1} \mathbf{v}_i = \mathbf{r}_i$. Get λ by using the constraint $||\mathbf{r}_i||^2 = 1$.

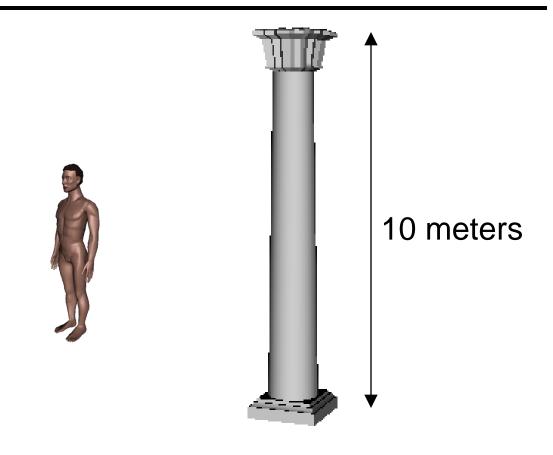
Calibration from vanishing points: Summary

- Solve for K (focal length, principal point) using three orthogonal vanishing points
- Get rotation directly from vanishing points once K is known
- Advantages
 - No need for calibration chart (2D-3D correspondences)
 - Could be completely automatic
- Disadvantages
 - Only applies to certain kinds of scenes
 - Inaccuracies in computation of vanishing points
 - Problems due to infinite vanishing points

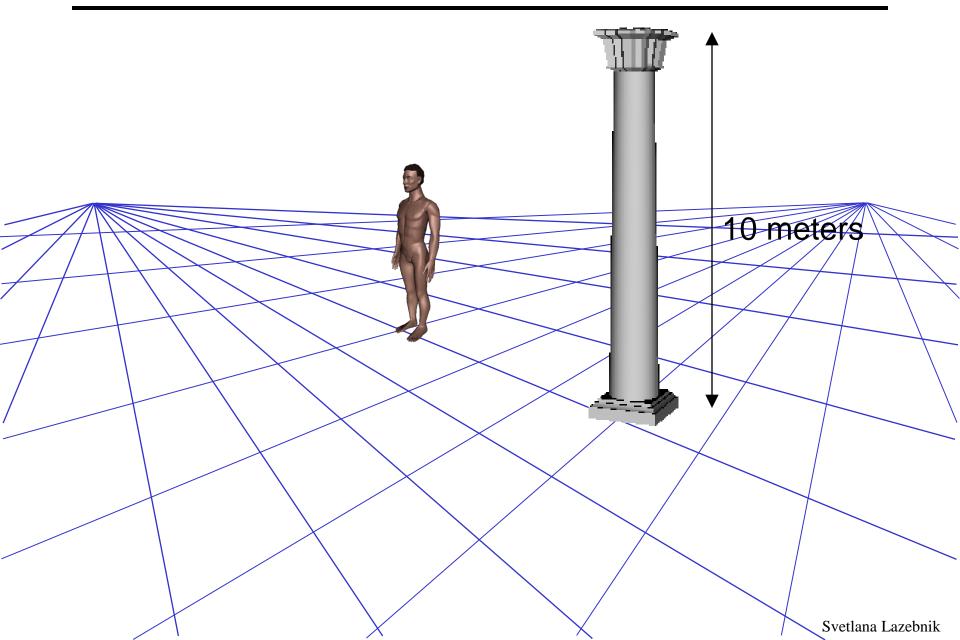
Outline

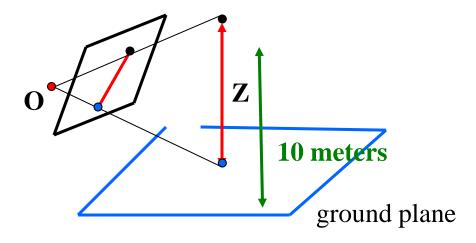
Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence Application: structure from motion revisited

Svetlana Lazebnik



Svetlana Lazebnik



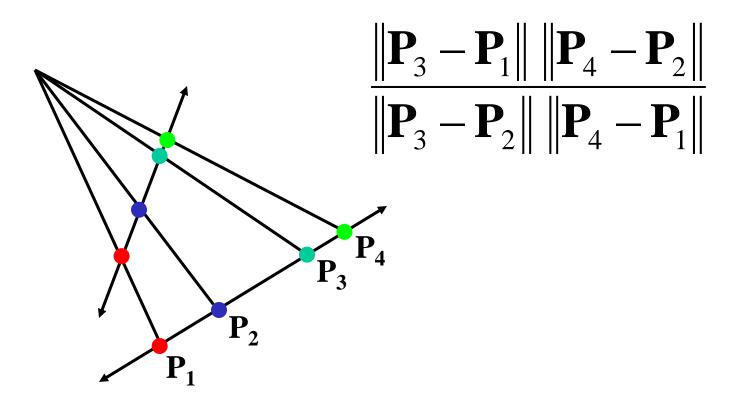


Goal: compute Z

Problem: depends on camera angle and distance

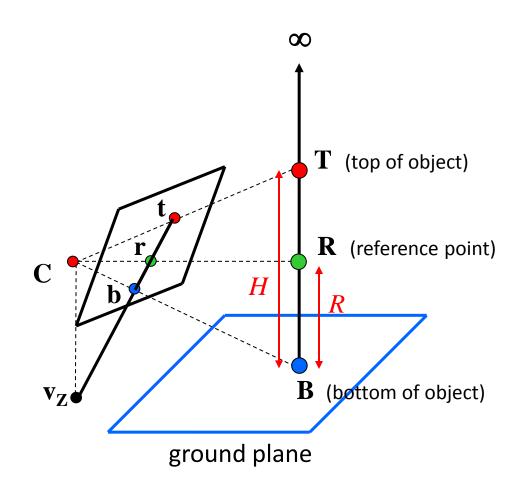
The cross-ratio

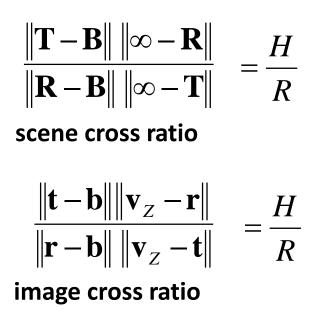
- A projective invariant: quantity that does not change under projective transformations (including perspective projection)
- The cross-ratio of four points:



Svetlana Lazebnik

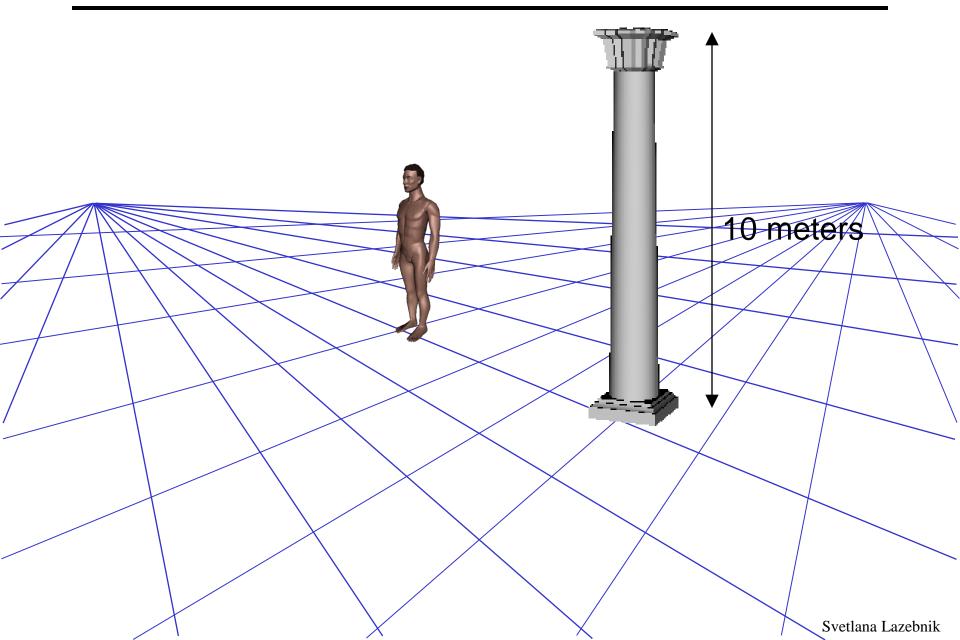
Measuring height

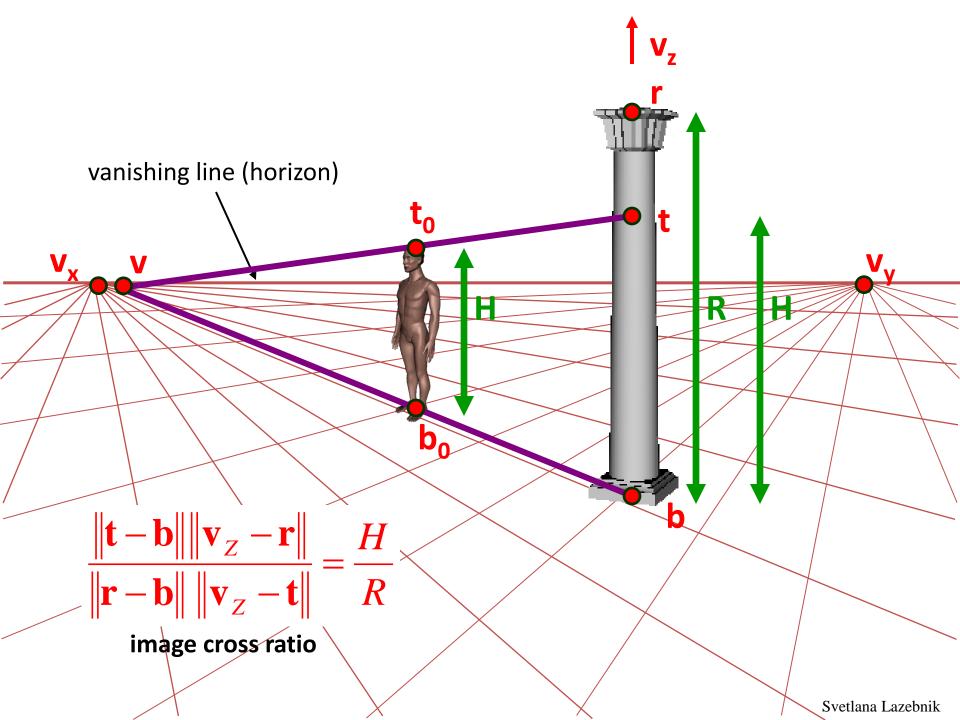




Svetlana Lazebnik

How Tall is the Man in this Image?



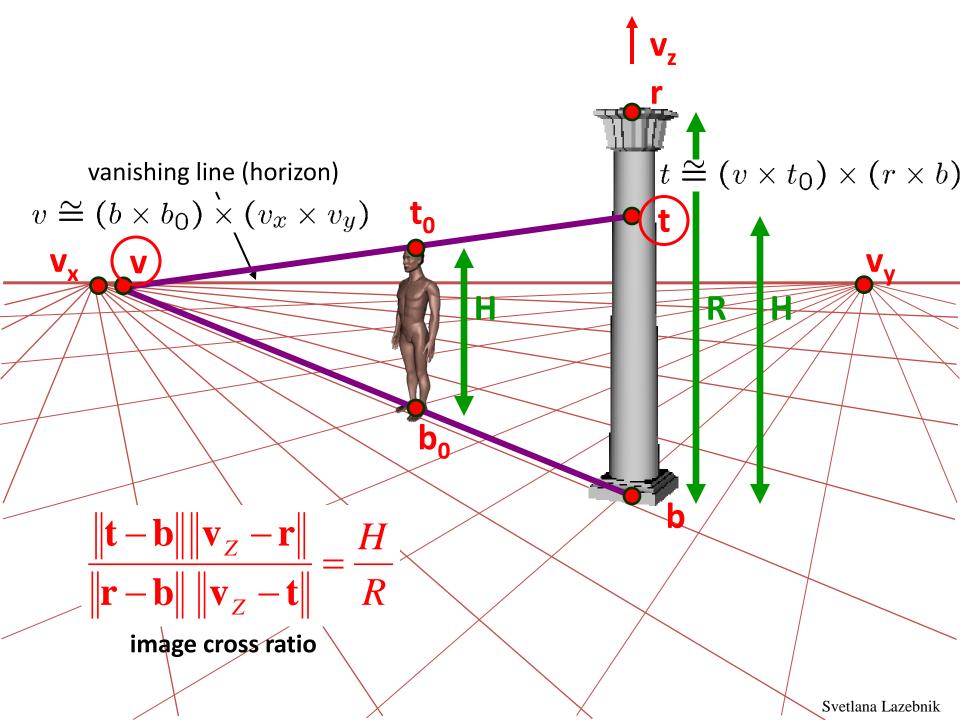


2D lines in homogeneous coordinates

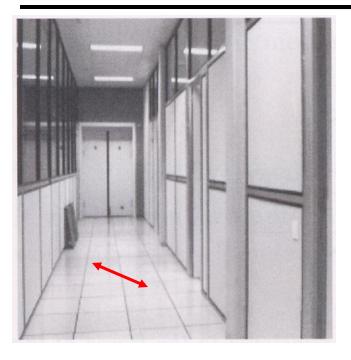
• Line equation: ax + by + c = 0

$$\mathbf{I}^T \mathbf{x} = \mathbf{0}$$
 where $\mathbf{I} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

- Line passing through two points: $\mathbf{l} = \mathbf{x}_1 \times \mathbf{x}_2$
- Intersection of two lines: $\mathbf{x} = \mathbf{l}_1 \times \mathbf{l}_2$

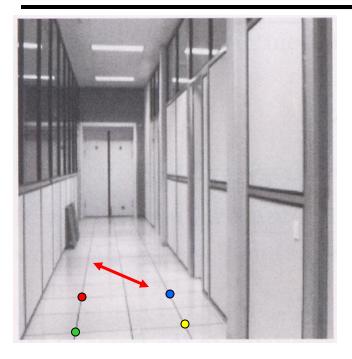


How Long is this Line Segment?



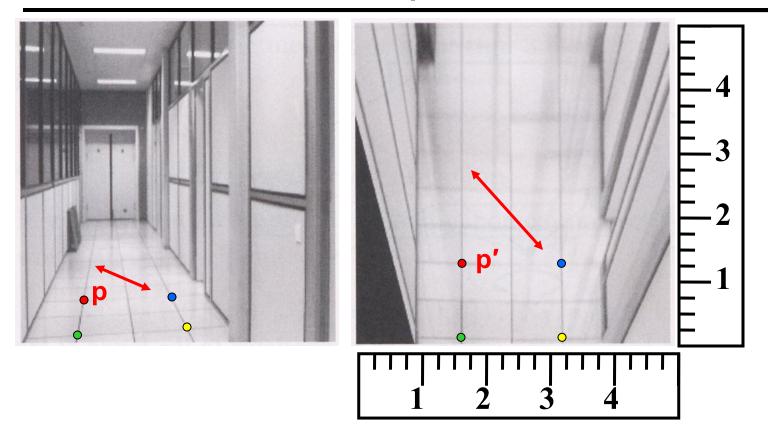
Can we measure distances between two points on same plane?

How Long is this Line Segment?



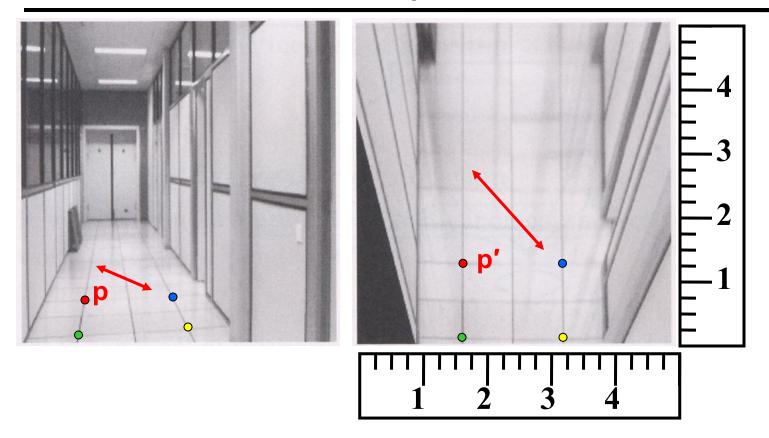
What if we know distances between some pairs of points on the same plane?

Measurements on planes



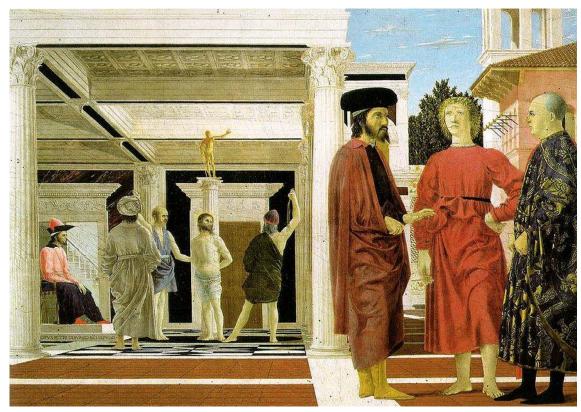
Approach: unwarp then measure What kind of warp is this?

Measurements on planes



Approach: unwarp then measure Homography!

Application: Image rectification



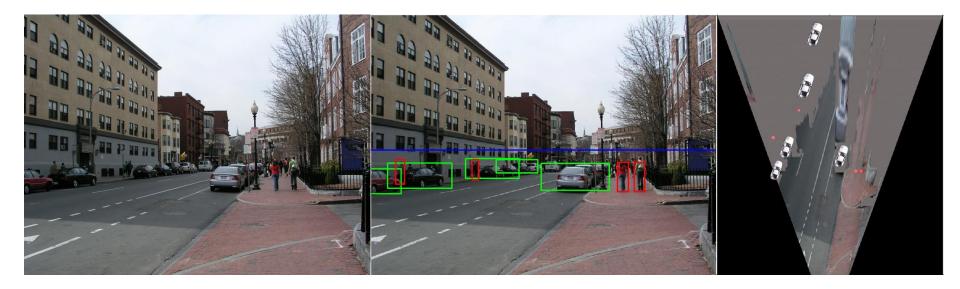
Piero della Francesca, Flagellation, ca. 1455

Application: Image editing

Inserting synthetic objects into images: http://vimeo.com/28962540

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem, "Rendering Synthetic Objects into Legacy Photographs," *SIGGRAPH Asia* 2011

Application: Object recognition

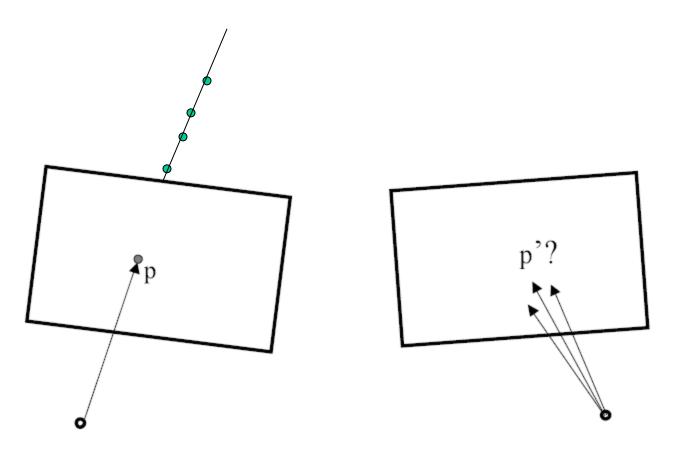


D. Hoiem, A.A. Efros, and M. Hebert, "Putting Objects in Perspective", CVPR 2006

Outline

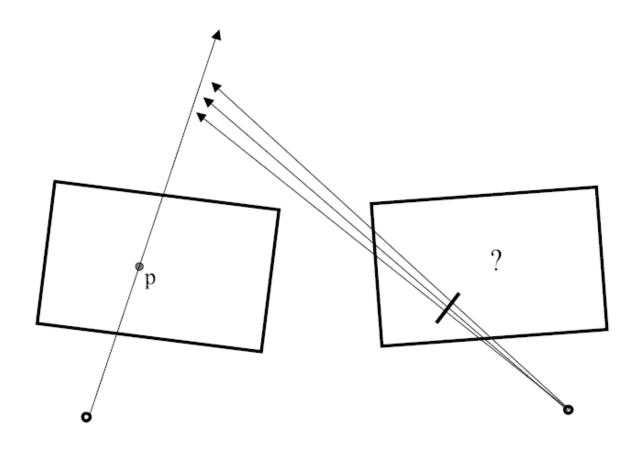
Projective geometry Vanishing points Application: camera calibration Application: single-view metrology **Epipolar** geometry Application: stereo correspondence Application: structure from motion revisited

Correspondence constraints?

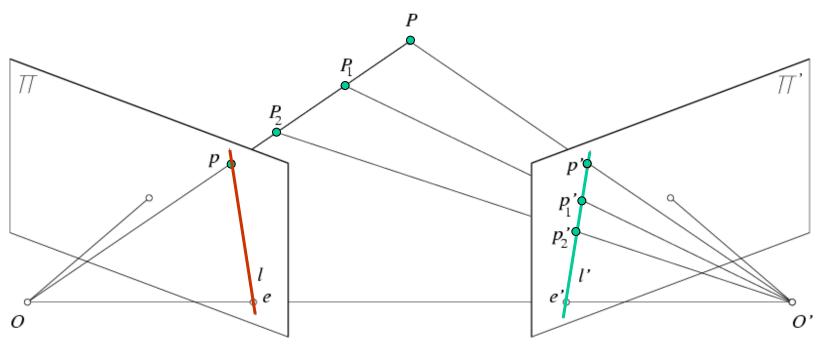


 Given p in left image, where can corresponding point p' be?

Correspondence constraints?



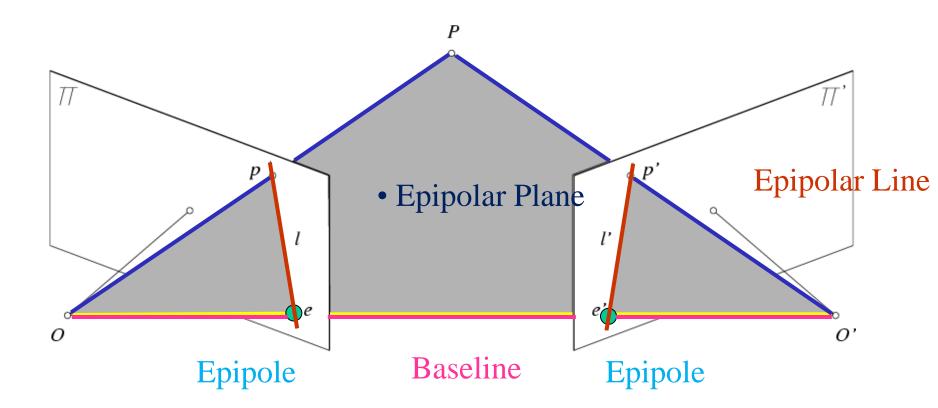
Epipolar constraint



Geometry of two views constrains where the corresponding pixel for some image point in the first view must occur in the second view.

It must be on the line carved out by a plane connecting the world point and optical centers.

Epipolar geometry



http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Epipolar geometry: terms

Baseline: line joining the camera centers

Epipole: point of intersection of baseline with image plane
Epipolar plane: plane containing baseline and world point
Epipolar line: intersection of epipolar plane with the image plane

All epipolar lines intersect at the epipole An epipolar plane intersects the left and right image planes in epipolar lines

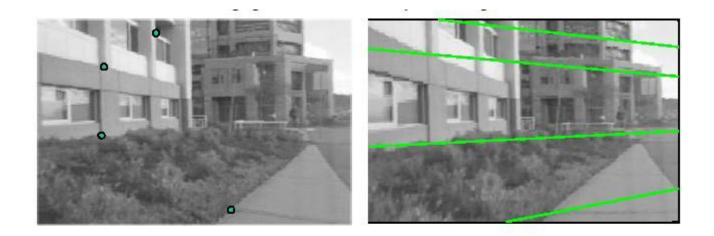
Why is the epipolar constraint useful?

Epipolar constraint

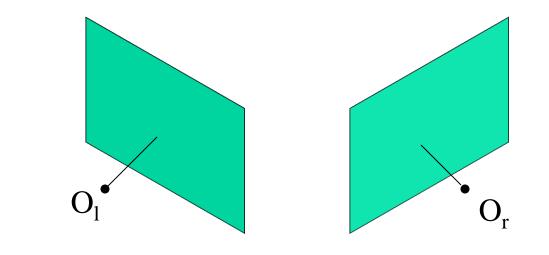
This is useful because it reduces the correspondence problem to a 1D search along an epipolar line.

Image from Andrew Zisserman

Example



What do the epipolar lines look like?



O_l ● O_r

2.

1.

Epipolar lines: converging cameras

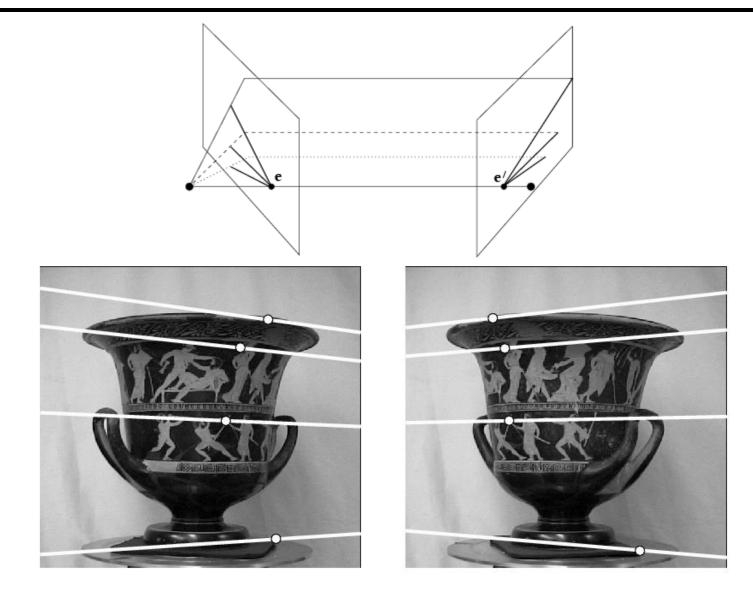
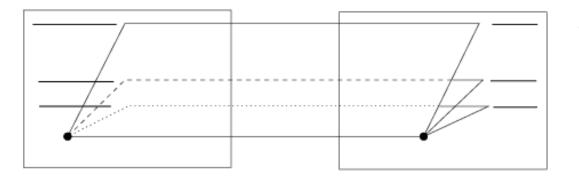
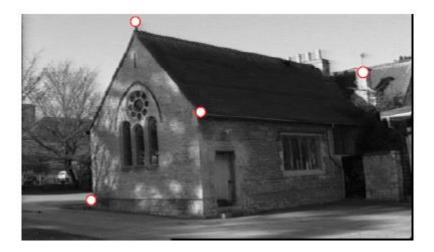


Figure from Hartley & Zisserman

Epipolar lines: parallel cameras



Where are the epipoles?



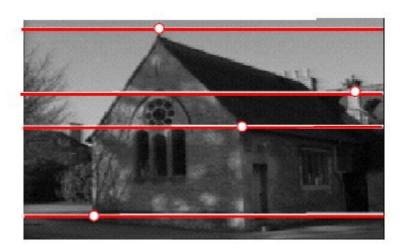


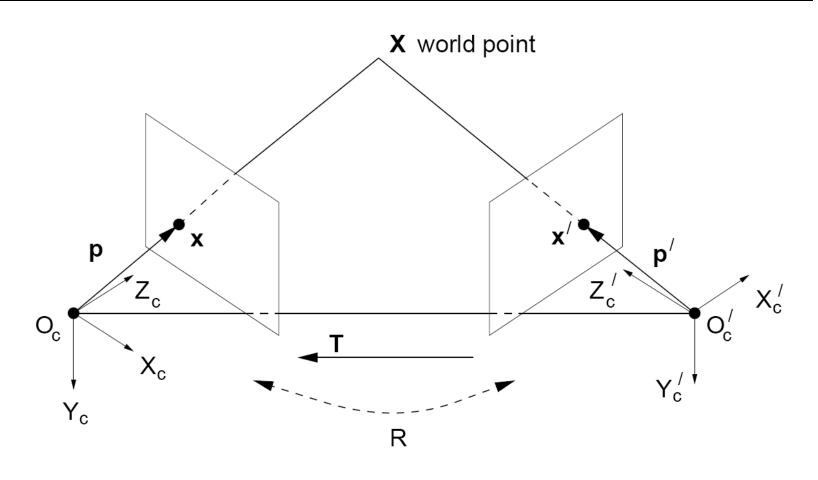
Figure from Hartley & Zisserman

Epipolar lines

So far, we have the explanation in terms of geometry.

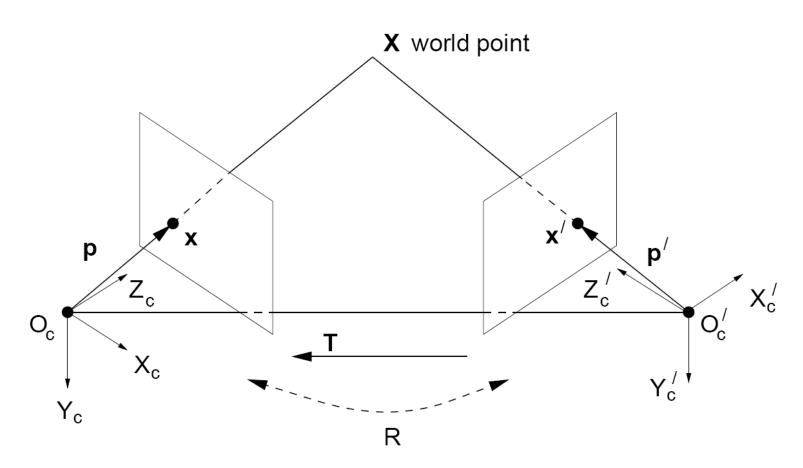
Now, how to express the epipolar constraints algebraically?

Stereo geometry



Main idea

Stereo geometry

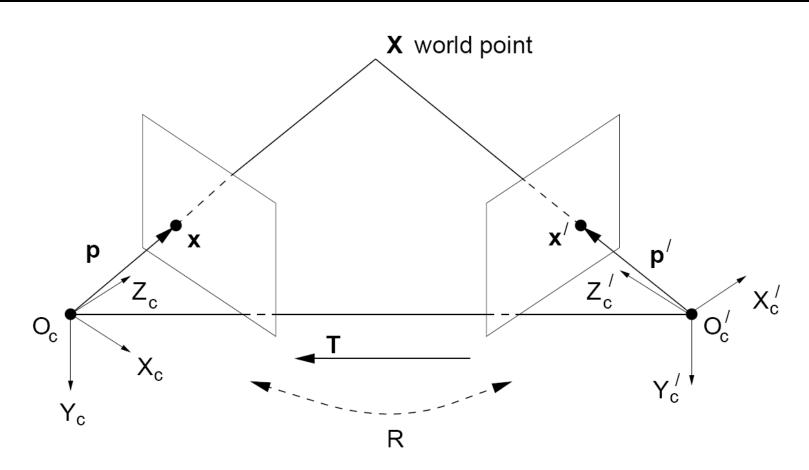


If the stereo rig is calibrated, we know :

how to **rotate** and **translate** camera reference frame 1 to get to camera reference frame 2.

Rotation: 3 x 3 matrix **R**; translation: 3 vector **T**.

Stereo geometry



If the stereo rig is calibrated, we know :

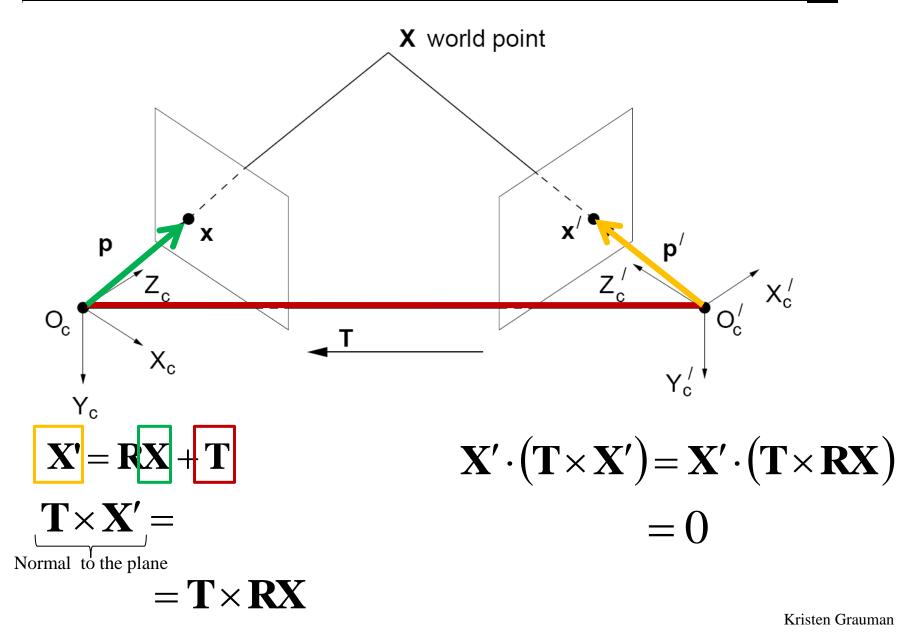
how to **rotate** and **translate** camera reference frame 1 to get to camera reference frame 2. $\mathbf{X'}_c = \mathbf{R}\mathbf{X}_c + \mathbf{T}$

$$\vec{a} \times \vec{b} = \vec{c} \qquad \qquad \vec{a} \cdot \vec{c} = 0 \\ \vec{b} \cdot \vec{c} = 0$$

Vector cross product takes two vectors and returns a third vector that's perpendicular to both inputs.

So here, c is perpendicular to both a and b, which means the dot product = 0.

From geometry to algebra



Another aside: Matrix form of cross product

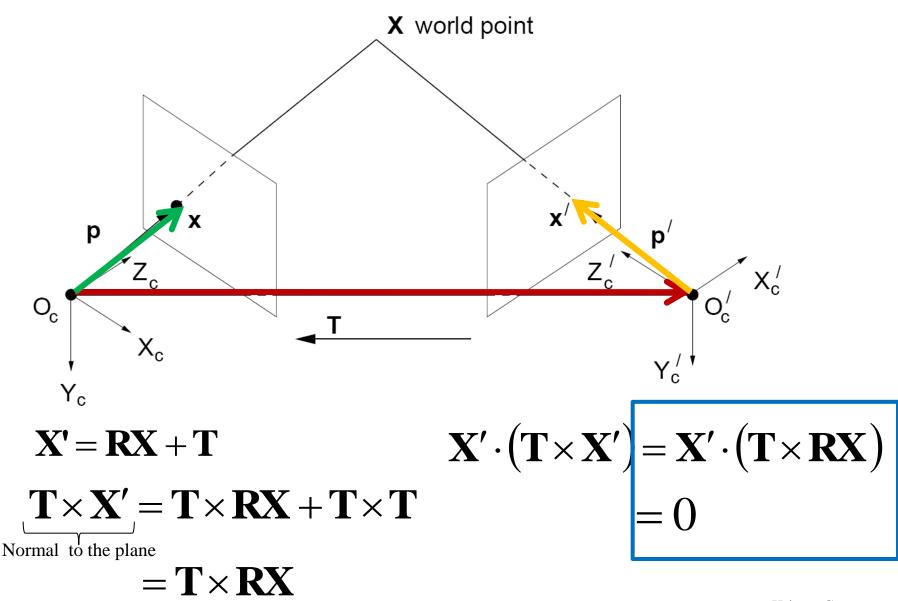
$$\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \vec{c} \qquad \vec{a} \cdot \vec{c} = \mathbf{0}$$

Can be expressed as a matrix multiplication.

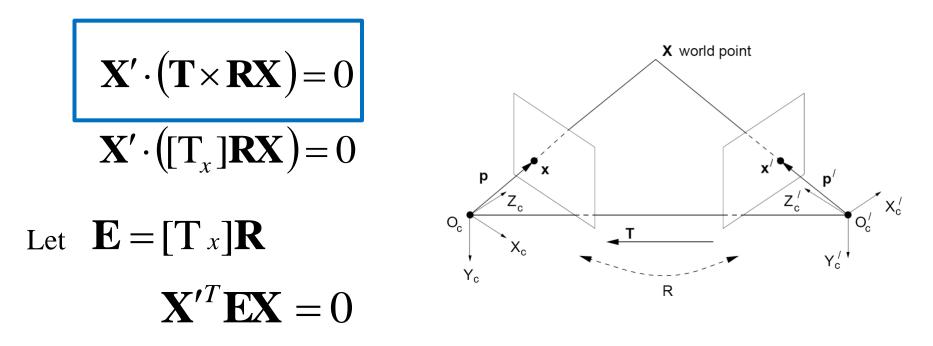
$$\begin{bmatrix} a_x \end{bmatrix} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

$$\vec{a} \times \vec{b} = [a_x]\vec{b}$$

From geometry to algebra



Essential matrix



E is called the **essential matrix**, and it relates corresponding image points between both cameras, given the rotation and translation.

If we observe a point in one image, its position in other image is constrained to lie on line defined by above.

Note: these points are in **camera coordinate systems**.

Relates pixel coordinates in the two views

$$\mathbf{p}_{im,right}^{\mathrm{T}}\mathbf{F}\mathbf{p}_{im,left}=\mathbf{0}$$

More general form than essential matrix: we remove need to know intrinsic parameters

If we estimate fundamental matrix from correspondences in *pixel coordinates*, can reconstruct epipolar geometry without intrinsic or extrinsic parameters.

Fundamental Matrix

$$\mathbf{p}_{c,right}^{T} \mathbf{E} \mathbf{p}_{c,left} = \mathbf{0}$$
 From before, the essential matrix **E**.

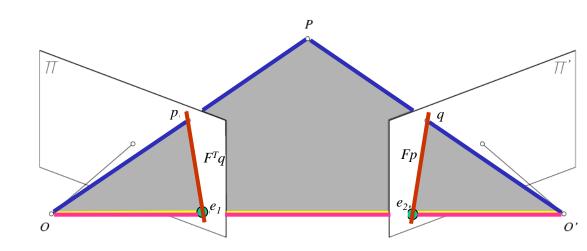
$$\left(\mathbf{M}_{int,righ}^{-1}\mathbf{p}_{im,right}\right)^{\mathrm{T}} \mathbf{E}\left(\mathbf{M}_{int,left}^{-1}\mathbf{p}_{im,left}\right) = 0$$

$$\mathbf{p}_{im,right}^{\mathrm{T}}\left(\mathbf{M}_{int,right}^{-\mathrm{T}}\mathbf{E}\mathbf{M}_{int,left}^{-1}\right) \mathbf{p}_{im,left} = 0$$

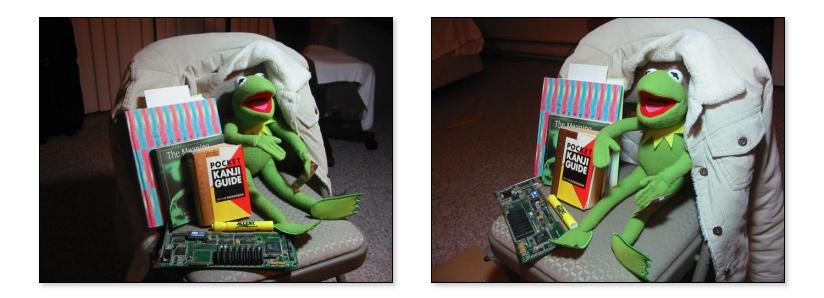
$$\mathbf{F}$$
"Fundamental matrix"
$$\mathbf{p}_{im,right}^{\mathrm{T}}\mathbf{F}\mathbf{p}_{im,left} = 0$$

Properties of the Fundamental Matrix

- ${\bf F} p\,$ is the epipolar line associated with $P\,$
- $\mathbf{F}^T \mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F}\mathbf{e}_1 = \mathbf{0}$ and $\mathbf{F}^T\mathbf{e}_2 = \mathbf{0}$
- \mathbf{F} is rank 2



Estimating the Fundamental Matrix



If we don't know **K**₁, **K**₂, **R**, or **t**, can we estimate **F** for two images?

Yes, given enough correspondences

The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$$

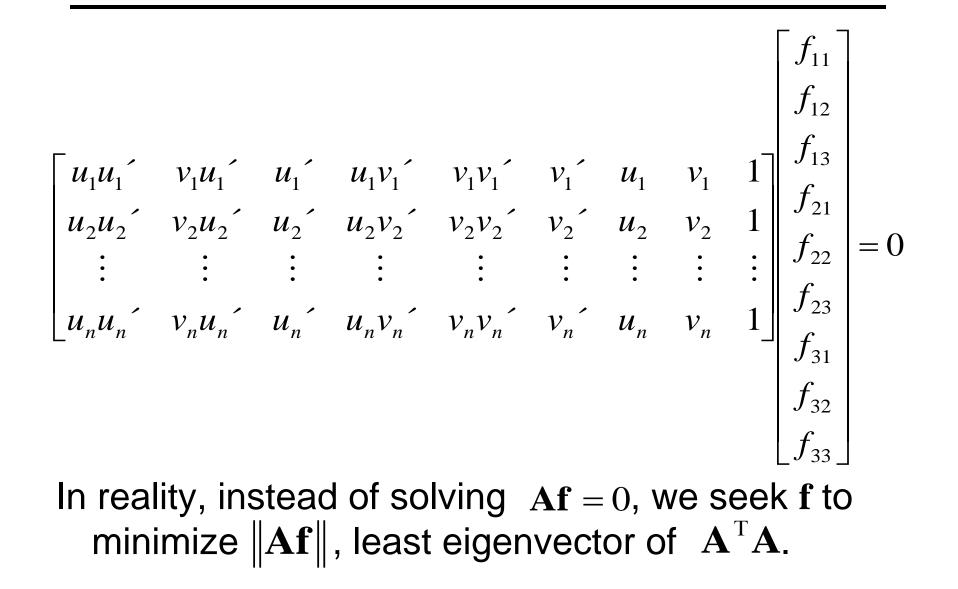
for any pair of matches x and x' in two images.

• Let
$$\mathbf{x} = (u, v, 1)^{\mathsf{T}}$$
 and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$

each match gives a linear equation

 $uu' f_{11} + vu' f_{12} + u' f_{13} + uv' f_{21} + vv' f_{22} + v' f_{23} + uf_{31} + vf_{32} + f_{33} = 0$

Estimating F – 8-point algorithm



- F should have rank 2
- To enforce that **F** is of rank 2, F is replaced by F' that minimizes $\|\mathbf{F} \mathbf{F}'\|$ subject to the rank constraint.
- This is achieved by SVD. Let $\mathbf{F} = \mathbf{U}\Sigma\mathbf{V}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \text{ let } \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F}' = \mathbf{U} \Sigma' \mathbf{V}^{\mathrm{T}}$ is the solution.

Estimating F – 8-point algorithm

Pros: it is linear, easy to implement and fast Cons: susceptible to noise

Outline

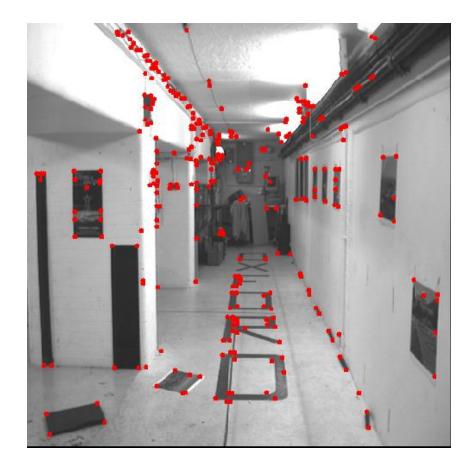
Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence Application: structure from motion revisited

Goal:

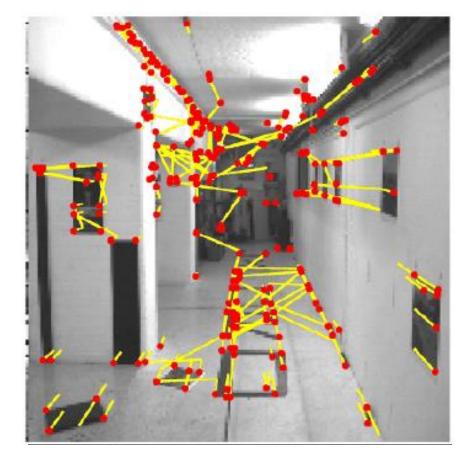
• Find correspondences (pairs of points $(u',v') \leftrightarrow (u,v)$).

- 1) Find interest points in image
- 2) Compute correspondences
- 3) Compute epipolar geometry
- 4) Refine

1) Find interest points



2) Match points within proximity to get putative matches



3) Compute epipolar geometry -- robustly with RANSAC

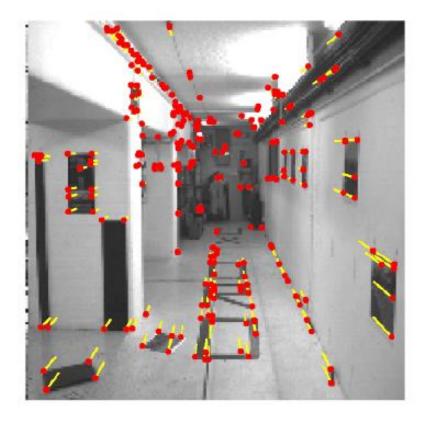
Select random sample of putative correspondences

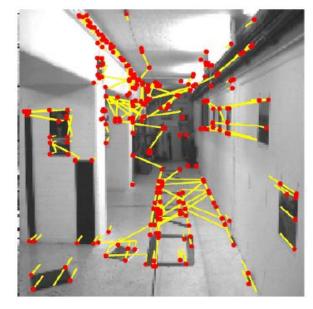
Compute **F** using them - determines epipolar constraint

Evaluate amount of support

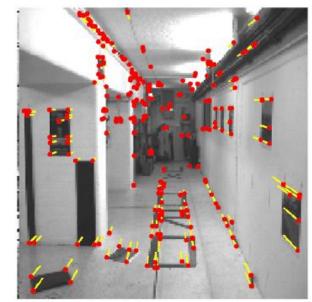
- inliers within threshold distance of epipolar line

Choose F with most support (inliers)





Using window search to get putative matches: noisy, but enough to compute F using RANSAC



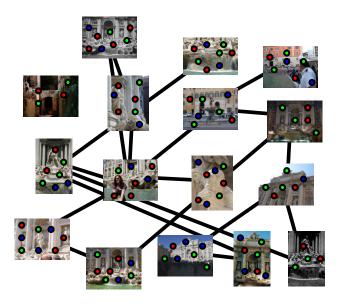
Pruned matches: those consistent with epipolar geometry

Outline

Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence Application: structure from motion revisited

Structure from Motion

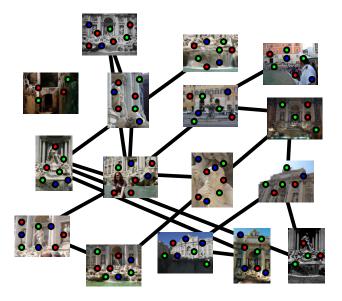
- 1. Detect features using SIFT
- 2. Match features between pairs of images
- **3.** Refine matching using RANSAC to find correspondences between each pair
- 4. Massive bundle adjustment



Structure from Motion

- 1. Detect features using SIFT
- 2. Match features between pairs of images
- Refine matching using RANSAC to find correspondences between each pair
 - 4. Massive bundle adjustment

Use fundamental matrix to detect inliers during RANSAC!



Structure from Motion Results

Structure from Motion Results

Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence Application: structure from motion revisited