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Review: Camera projection matrix 
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Review: Camera parameters 

• Intrinsic parameters 

• Image center (px,py) 

• Focal length (f) 

• Pixel magnification (mx,my) 

• Skew (non-rectangular pixels) 

• Radial distortion 
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Review: Camera parameters 

• Intrinsic parameters 

• Principal point coordinates 

• Focal length 

• Pixel magnification 

• Skew (non-rectangular pixels) 

• Radial distortion 

• Extrinsic parameters 

• Rotation (R) and translation (t) relative to 

world coordinate system 

 tRKP 



Review: Camera calibration 
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Review: Camera calibration 

• Given n points with known 3D coordinates Xi 

and known image projections xi, estimate the 

camera parameters 

 P

Xi 

xi 



Camera calibration 

• What if don’t know correspondences? 

• Can you determine the camera  

intrinsic parameters (focal length, center) or 

extrinsic parameters (rotation, translation)? 



Camera calibration 

• Let’s see what we can get from vanishing points 
  

Vanishing 
 point 

Vanishing 
 line 

Vanishing 
 point 

 Vertical vanishing 
 point 

(at infinity) 

Slide from Efros, Photo from Criminisi 
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Review: Vanishing Points 

v1 v2 l 

– Any set of parallel lines  

on a plane define a  

vanishing point 

– The union of all of  

these vanishing points  

is the horizon line 

• also called vanishing line 

– Different planes (can)  

define different  

vanishing lines 

Noah Snavely 



Review: Vanishing points 

image plane 

line in the scene 

vanishing point v 

• All lines having the same direction share the same 

vanishing point 

camera 

center 



Computing Vanishing Points  

How can we find lines in an image? 



Computing Vanishing Points  

Edge detection 

Papusha & Ho 

Edges 



Computing Vanishing Points  

Edge detection + Hough transform 

Papusha & Ho 

Strong Lines Hough Transform 



q1 

Computing Vanishing Points  

For a set of parallel lines, how can we find 

where they intersect? 

v 

p1 

p2 

q2 



q1 

Computing Vanishing Points  

Intersect p1q1 with p2q2  
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Computing Vanishing Points  

Intersect p1q1 with p2q2  
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Computing Vanishing Points  

Intersect p1q1 with p2q2  
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q1 

Computing Vanishing Points  

Intersect p1q1 with p2q2  

v 

p1 

p2 

q2 

Least squares version 

• Better to use more than two lines and compute 

 the “closest” point of intersection 

 



Computing Vanishing Points  

Alternative: vanishing points can be extracted 

directly from Hough transform (fit sine curves) 

Papusha & Ho 

Strong Lines Hough Transform 



Computing Vanishing Points  

Vanishing points can be extracted directly from 

Hough transform (fit sine curves) 

Papusha & Ho 

Hough Transform 

Strong Lines 



Outline 

Projective geometry 

Vanishing points 

 Application: camera calibration 

 Application: single-view metrology 

Epipolar geometry 

 Application: stereo correspondence 

 Application: structure from motion revisited 

 



Calibration from vanishing points 

• What camera parameters can we calibrate using 

three orthogonal vanishing directions (points)? 

v1 

v3 . 

v2 



Calibration from vanishing points 

• Let us align the world coordinate system with three 

orthogonal vanishing directions in the scene: 

 

 

 

 

 

 

 

• Each pair of vanishing points gives us a constraint 

on the focal length and principal point 
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Intrinsic calibration from vanishing points 

Can solve for focal length, image center Cannot recover focal 

length, image center is the 

finite vanishing point 



Rotation from vanishing points 

Thus,  

Get λ by using the constraint ||ri||
2=1. 
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Calibration from vanishing points: Summary 

• Solve for K (focal length, principal point) using three 

orthogonal vanishing points 

• Get rotation directly from vanishing points once  

K is known 

 

• Advantages 

• No need for calibration chart  

(2D-3D correspondences) 

• Could be completely automatic 

• Disadvantages 

• Only applies to certain kinds of scenes 

• Inaccuracies in computation of vanishing points 

• Problems due to infinite vanishing points 
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How Tall is the Man in this Image? 

Svetlana Lazebnik 



How Tall is the Man in this Image? 

10 meters 

Svetlana Lazebnik 



How Tall is the Man in this Image? 

10 meters 

Svetlana Lazebnik 



O 

How Tall is the Man in this Image? 

ground plane 

Goal: compute Z 

Z 

Problem: depends on camera angle and distance 

10 meters 

Svetlana Lazebnik 



The cross-ratio 

• A projective invariant: quantity that does not change 

under projective transformations (including perspective 

projection) 

• The cross-ratio of four points: 

P1 

P2 

P3 
P4 

1423

2413

PPPP

PPPP
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Svetlana Lazebnik 
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How Tall is the Man in this Image? 

10 meters 

Svetlana Lazebnik 
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Svetlana Lazebnik 



2D lines in homogeneous coordinates 

• Line equation:  ax + by + c = 0 

 

 

 

 

 

• Line passing through two points: 

 

• Intersection of two lines: 
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How Long is this Line Segment? 

Can we measure distances between 

two points on same plane? 

Svetlana Lazebnik 



How Long is this Line Segment? 

What if we know distances between some 

pairs of points on the same plane? 

Svetlana Lazebnik 



Measurements on planes 

1 2 3 4 

1 

2 

3 

4 

p′ 

Approach: unwarp then measure 

p 

What kind of warp is this? 

Svetlana Lazebnik 



Measurements on planes 

1 2 3 4 

1 

2 

3 

4 

p′ 

Approach: unwarp then measure 

p 

Homography! 

Svetlana Lazebnik 



Application: Image rectification 

Piero della Francesca, Flagellation, ca. 1455 

Svetlana Lazebnik 



Application: Image editing 

Inserting synthetic objects into images: 

http://vimeo.com/28962540 

 

 

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem, “Rendering Synthetic Objects into 

Legacy Photographs,” SIGGRAPH Asia 2011 
Svetlana Lazebnik 

http://vimeo.com/28962540


Application: Object recognition 

D. Hoiem, A.A. Efros, and M. Hebert, "Putting Objects in Perspective", CVPR 2006 

Svetlana Lazebnik 
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• Given p in left image, where can corresponding 

point p’ be? 

Correspondence constraints? 

Kristen Grauman 



Kristen Grauman 

Correspondence constraints? 



Geometry of two views constrains where the corresponding pixel 

for some image point in the first view must occur in the second 

view. 

It must be on the line carved out by a plane  

connecting the world point and optical centers.  
 

Epipolar constraint 

 

Kristen Grauman 



• Epipolar Plane 

Epipole 

Epipolar Line 

Baseline 

Epipolar geometry 

 

Epipole 

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html 

 

 

 

Kristen Grauman 

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html


Baseline: line joining the camera centers 

Epipole: point of intersection of baseline with image plane 

Epipolar plane: plane containing baseline and world point 

Epipolar line: intersection of epipolar plane with the image 

plane 

 

All epipolar lines intersect at the epipole 

An epipolar plane intersects the left and right image planes in 

epipolar lines 

 

Epipolar geometry: terms 

 

Why is the epipolar constraint useful? 
Kristen Grauman 



Epipolar constraint 

 

This is useful because it reduces the correspondence problem to 

a 1D search along an epipolar line. 

Image from Andrew Zisserman 



Example 

Kristen Grauman 



What do the epipolar lines look like? 

Ol Or 

Ol Or 

1.  

2.  

Kristen Grauman 



Epipolar lines: converging cameras 

Figure from Hartley & Zisserman 



Figure from Hartley & Zisserman 

Where are 

the epipoles? 

Epipolar lines: parallel cameras 



So far, we have the explanation in terms of 

geometry. 

Now, how to express the epipolar constraints 

algebraically? 

Kristen Grauman 

Epipolar lines 



Stereo geometry 

Main idea 

Kristen Grauman 



If the stereo rig is calibrated, we know : 

how to rotate and translate camera reference frame 1 to get to 

camera reference frame 2. 
Rotation: 3 x 3 matrix R; translation: 3 vector T. 

 
Kristen Grauman 

Stereo geometry 



If the stereo rig is calibrated, we know : 

how to rotate and translate camera reference frame 1 to get to 

camera reference frame 2. 

 
TRXX  cc'
Kristen Grauman 

Stereo geometry 



An aside: cross product 

Vector cross product takes two vectors and 

returns a third vector that’s perpendicular to 

both inputs. 

 

So here, c is perpendicular to both a and b, 

which means the dot product = 0. 

Kristen Grauman 



From geometry to algebra 

TRXX' 

TTRXTXT 

RXT

   RXTXXTX 

0
Normal  to the plane 

Kristen Grauman 



Another aside: Matrix form of cross product 

Can be expressed as a matrix multiplication. 
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From geometry to algebra 

TRXX' 

TTRXTXT 

RXT

   RXTXXTX 

0
Normal  to the plane 

Kristen Grauman 



Essential matrix 

  0 RXTX

  0][T  RXX x

E is called the essential matrix, and it relates corresponding 

image points between both cameras, given the rotation and 

translation. 
 

If we observe a point in one image, its position in other image is 

constrained to lie on line defined by above. 
 

Note: these points are in camera coordinate systems. 

Let RE ][T x

0 EXX
T

Kristen Grauman 



Fundamental matrix 

Relates pixel coordinates in the two views 

 

 

More general form than essential matrix: we 

remove need to know intrinsic parameters 

If we estimate fundamental matrix from 

correspondences in pixel coordinates, can 

reconstruct epipolar geometry without intrinsic or 

extrinsic parameters. 
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0,, 


leftcrightc Epp From before, the essential 

matrix E. 

    0,

1

,
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leftimint,leftrightimint,right pMEpM
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“Fundamental matrix” F

Fundamental Matrix 



Properties of the Fundamental Matrix 

•         is the epipolar line associated with 

 

•           is the epipolar line associated with  

 

•                    and  

 

•       is rank 2 
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If we don’t know K1, K2, R, or t, can we estimate F 

for two images? 
 

Yes, given enough correspondences 

Estimating the Fundamental Matrix 



Estimating F – 8-point algorithm 

The fundamental matrix F is defined by 
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Fxx'
for any pair of matches x and x’ in two images. 

• Let x=(u,v,1)T and x’=(u’,v’,1)T, 
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Estimating F – 8-point algorithm 



F should have rank 2 

To enforce that F is of rank 2, F is replaced by F’ 

that minimizes              subject to the rank 

constraint.  

'FF 

 

• This is achieved by SVD. Let                , where  

 

                              , let  

 

 

   then                    is the solution.  
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Estimating F – 8-point algorithm 



Pros: it is linear, easy to implement and fast 

Cons: susceptible to noise 

 

Estimating F – 8-point algorithm 



Outline 

Projective geometry 

Vanishing points 

 Application: camera calibration 

 Application: single-view metrology 

Epipolar geometry 

 Application: stereo correspondence 

 Application: structure from motion revisited 

 



Stereo Correspondence 

Goal: 

• Find correspondences (pairs of points (u’,v’) ↔ (u,v)). 

 

 

 

 

 

 

 

1) Find interest points in image  

2) Compute correspondences 

3) Compute epipolar geometry 

4) Refine 

Example from Andrew Zisserman 



1) Find interest points 

Stereo Correspondence 



2) Match points within proximity to get putative matches 

Stereo Correspondence 



3) Compute epipolar geometry -- robustly with RANSAC 

 

Select random sample of 

putative correspondences 
 

Compute F using them 

- determines epipolar constraint 
 

Evaluate amount of support 

- inliers within threshold distance of 

epipolar line 
 

Choose F with most support 

(inliers) 

 

 

Stereo Correspondence 



Using window 

search to get 

putative matches: 

noisy, but enough 

to compute F 

using RANSAC 

Pruned 

matches: those 

consistent with 

epipolar 

geometry 
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Structure from Motion 

1. Detect features using SIFT 

2. Match features between pairs of images 

3. Refine matching using RANSAC to find 

correspondences between each pair 

4. Massive bundle adjustment 

 

 

 

Noah Snavely 



Structure from Motion 

1. Detect features using SIFT 

2. Match features between pairs of images 

3. Refine matching using RANSAC to find 

correspondences between each pair 

4. Massive bundle adjustment 

 

 

 

Noah Snavely 

Use fundamental matrix to  

detect inliers during RANSAC! 



Structure from Motion Results 

Noah Snavely 



Structure from Motion Results 

Noah Snavely 



Recap 

Projective geometry 

Vanishing points 

 Application: camera calibration 

 Application: single-view metrology 

Epipolar geometry 

 Application: stereo correspondence 

 Application: structure from motion revisited 

 


