Image Mosaics

COS 429 Princeton University

Image Mosaics (Panoramas)

Obtain a wider angle view by combining multiple images.

Image Mosaics (Panoramas)

To construct an image mosaic, we need to find the homographies (projective transformations) that map image planes onto one

Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fal

Image Mosaics (Panoramas)

Computing a mosaic (panorama) requires finding a set of >=4 point correspondences

Image Mosaicing

- 1) Feature Detection: Identify image features
- 2) Feature Description: Extract feature descriptor for each feature
- 3) Feature Matching: Find candidate matches between features
- 4) Feature Correspondence: Find consistent set of (inlier) correspondences between features

Image Mosaicing (last time)

- 1) Feature Detection: Identify image features
- 2) Feature Description: Extract feature descriptor for each feature
- 3) Feature Matching: Find candidate matches between features
- 4) Feature Correspondence: Find consistent set of (inlier) correspondences between features

Image Mosaicing (last time)

- 1) Feature Detection: Identify image features $\mathbf{x}_1 =$
- 2) Feature Description: Extract feature descriptor for each feature
- 3) Feature Matching: Find candidate matches between features
- 4) Feature Correspondence: Find consistent set of (inlier) correspondences between features

$$[x_{1}^{(1)}, \dots, x_{d}^{(1)}]$$

$$\mathbf{x}_{2}^{\mathbf{\vee}} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$

Image Mosaicing (this time)

- 1) Feature Detection: Identify image features
- 2) Feature Description: Extract feature descriptor for each feature
- 3) Feature Matching: Find candidate matches between features
- 4) Feature Correspondence: Find consistent set of (inlier) correspondences between features

Image Mosaicing (this time)

- 1) Feature Detection: Identify image features
- 2) Feature Description: Extract feature descriptor for each feature
- 3) Feature Matching: Find candidate matches between features
- 4) Feature Correspondence: Find consistent set of (inlier) correspondences between features

Goal: produce a set of candidate matches that contains...

- Many "correct" matches
- As few "wrong" matches as possible

We will consider only these candidate matches when searching for correspondences

How?

Descriptor Space

What is a good way to choose candidate matches?

Descriptor Space

Simple method 1: create matches from each feature A_i to feature B_k in B with minimum $d(A_i, B_k)$

Descriptor Space

 $d(A_i,B_j)$ is Euclidean distance in descriptor space

Simple method 1: create matches from each feature A_i to feature B_k in B with minimum $d(A_i, B_k)$

Descriptor Space

 $d(A_i,B_j)$ is Euclidean distance in descriptor space

Simple method 1: create matches from each feature A_i to feature B_k in B with minimum $d(A_i, B_k)$

Descriptor Space

 $d(A_i,B_j)$ is Euclidean distance in descriptor space

Simple method 2: create matches from each feature A_i to feature B_k in B with minimum $d(A_i, B_k)$ iff $d(A_i, B_k) < threshold$

Descriptor Space

 $d(A_i,B_j)$ is Euclidean distance in descriptor space

Simple method 2: create matches from each feature A_i to feature B_k in B with minimum d(A_i,B_k) iff d(A_i,B_k) < threshold

Descriptor Space

 $d(A_i,B_j)$ is Euclidean distance in descriptor space

Ratio method: create matches from each feature A_i to the closest feature in B with minimum $d(A_i, B_k)$ iff $d(A_i, B_k) / d(A_i, B_{k2}) < threshold$

 B_k is the closest feature B_{k2} is the second closest feature

Descriptor Space

 $d(A_i,B_j)$ is Euclidean distance in descriptor space

Ratio method: threshold ratio of L2 distance to best match divided by L2 distance to 2nd best match

Mutual closest method: create matches between features A_i and B_k iff they are mutually closest among all pairs of features

Descriptor Space

Mutual closest method: create matches between features A_i and B_k iff they are mutually closest

Mutual closest method: create matches between features A_i and B_k iff they are mutually closest

(A,B) is a bad match

Mutual closest method: create matches between features A_i and B_k iff they are mutually closest

(A,B) is a good match

Image Mosaicing

- 1) Feature Detection: Identify image features
- 2) Feature Description: Extract feature descriptor for each feature
- 3) Feature Matching: Find candidate matches between features
- 4) Feature Correspondence: Find consistent set of (inlier) correspondences between features

Image Mosaicing

- 1) Feature Detection: Identify image features
- 2) Feature Description: Extract feature descriptor for each feature
- 3) Feature Matching: Find candidate matches between features
- 4) Feature Correspondence: Find consistent set of (inlier) correspondences between features

Goal: produce a set of correspondences that ...

- Contains >=4 matches to define a homography
- Contains only matches that agree on the same homography
- Aligns as many matching features as possible

Candidate matches

Source: L. Lazebnik

Correspondences

How?

Observation 1: any combination of >= 4 matches defines a homography

Observation 1: any combination of >= 4 matches defines a homography
Feature Correspondence

Observation 2: every homography H provides a map P' = H(p)

Source: L. Lazebnik

Feature Correspondence

Observation 3: can measure how "good" a map is based on how many matches are aligned by it

- generator matches: features defining the homography
- inlier matches: other features aligned by homography
- outlier matches: others (not shown)

RANSAC loop:

- 1. Select four matches (at random)
- 2. Compute homography H aligning those matches
- 3. Find *inlier matches* where $d(p_i, Hp_i) < \varepsilon$
- 4. Re-compute H to align on all of its inliers (least squares)
- 5. Re-find *inlier matches* where $d(p_i, Hp_i) < \varepsilon$
- 6. H*=H if has H largest set of inliers seen so far

Warp image by H* Composite images

RANSAC loop:

- 1. Select four matches (at random)
- 2. Compute homography H aligning those matches
- 3. Find *inlier matches* where $d(p_i, Hp_i) < \varepsilon$
- 4. Re-compute H to align on all of its inliers (least squares)
- 5. Re-find *inlier matches* where $d(p_i, Hp_i) < \varepsilon$
- 6. H*=H if has H largest set of inliers seen so far

RANSAC loop:

- 1. Select four matches (at random)
- 2. Compute homography H aligning those matches
- 3. Find *inlier matches* where $d(p_i) < \varepsilon$
- 4. Re-compute H to align on all of its inliers (least squares)
- 5. Re-find *inlier matches* where $d(p_i) < \varepsilon$
- 6. H*=H if has H largest set of inliers seen so far

RANSAC loop:

- 1. Select four matches (at random)
- 2. Compute homography H aligning those matches
- 3. Find *inlier matches* where $d(p_i) < \varepsilon$
- 4. Re-compute H to align on all of its inliers (least squares)
- 5. Re-find *inlier matches* where $d(p_i) < \varepsilon$
- 6. H*=H if has H largest set of inliers seen so far

RANSAC loop:

- 1. Select four matches (at random)
- 2. Compute homography H aligning those matches
- 3. Find *inlier matches* where $d(p_i) < \varepsilon$
- 4. Re-compute H to align on all of its inliers (least squares)
- 5. Re-find *inlier matches* where $d(p_i', Hp_i) \le \varepsilon$
- 6. H*=H if has H largest set of inliers seen so far

RANSAC loop:

- 1. Select four matches (at random)
- 2. Compute homography H aligning those matches
- 3. Find *inlier matches* where $d(p_i) < \varepsilon$
- 4. Re-compute H to align on all of its inliers (least squares)
- 5. Re-find *inlier matches* where $d(p_i) < \varepsilon$
- 6. H*=H if has H largest set of inliers seen so far

Image Mosaicing (summary, so far)

- 1) Feature Detection: Identify image features
- 2) Feature Description: Extract feature descriptor for each feature
- 3) Feature Matching: Find candidate matches between features
- 4) Feature Correspondence: Find consistent set of (inlier) correspondences between features

Image Mosaicing (rest of the story)

- 4) Estimate homography: Solve linear system of equations
- 5) Warp one image to the other Apply homography transformation to every pixel
- 6) Composite images: Blend pixels in overlap area

Image Mosaicing (rest of the story)

- 4) Estimate homography: Solve linear system of equations
- 5) Warp one image to the other Apply homography transformation to every pixel
- 6) Composite images: Blend pixels in overlap area

Estimating the Homography

A mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Estimating the Homography

A homography is the transformation that projects an image onto a new view plane from the same viewpoint (center of projection)

What is a Homography?

- A projective transform mapping between any two PPs with the same center of projection
 - rectangle should map to arbitrary quadrilateral
 - lines stay straight
 - but don't stay parallel

What is a Homography?

A projective transform of 2D points in homogeneous coordinates can be represented by a 3x3 matrix

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Estimating the Homography

To **compute** the homography given pairs of corresponding points in the images, we solve a system of equations

min || Hp – p' ||²

Image Mosaicing

- 4) Estimate homography: Solve linear system of equations
- 5) Warp one image to the other Apply homography transformation to every pixel
- 6) Composite images: Blend pixels in overlap area

Image Warping

Given a coordinate transform H and a source image f(x,y), compute a transformed image g(H(x,y)) = f(x,y)?

Slide from Alyosha Efros, CMU

Image warping

Reverse mapping: Get each pixel g(x',y') from its corresponding location $(x,y) = H^{-1}(x',y')$ in the source image f(x,y)

Image Mosaicing

- 4) Estimate homography: Solve linear system of equations
- 5) Warp one image to the other Apply homography transformation to every pixel
- 6) Composite images: Blend pixels in overlap area

Kristen Grauman

Goal: merge two overlapping images

How?

Simplest method: overlay one image over the other

Small improvement: blend in overlap area

Better improvement: blend gradients rather than colors

sources/destinations

Composition

Slide credit: F. Durand

Better improvement: blend gradients rather than colors

sources/destinations

Composition

Gradient-domain Composition

Slide credit: F. Durand

Even better improvement: use graph cut to find seam blending across in gradient domain

Even better improvement: use graph cut to find seam blending across in gradient domain

That's a whole lecture for another time ...

Summary for Assignment 2

Feature detection

Harris corner or SIFT

Feature description

• Window or SIFT

Feature matching

Ratio

Feature correspondence

• RANSAC

Homography estimation

cp2tform

Image warping

imtransform

Image composition

Overlay

Scene Completion Using Millions of Photographs

James Hays and Alexei A. Efros SIGGRAPH 2007

Slides by J. Hays and A. Efros

Texture synthesis result

Image Completion

2.3 Million unique images from Flickr

Scene Completion Result

Image Completion Algorithm

Input image

Scene Descriptor

Image Collection

Mosaicing

200 matches

20 completions

Image Completion

... 200 best matches Hays et al. SIGGRAPH 07

Image Completion

Image Completion Result

Image Completion Results

