Segmentation I

Goal

Separate image into coherent "regions"

Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Slide by L. Lazebnik

Applications

Semantics

What is coherent?

What is coherent?

- Spatial proximity?
- Similar color?
- Similar texture?

What is coherent?

- Spatial proximity?
- Similar color?
- Similar texture?

What kinds of regions?

What is coherent?

- Spatial proximity?
- Similar color?
- Similar texture?

What kinds of regions?

- Nearly convex?
- Smooth boundaries?
- Nearly equal sizes?
- What granularity?

Gestault factors:

A Typical Segmentation Problem

Partition an image into arbitrarily shaped regions containing pixels with similar colors and positions

Segmentation Algorithms?

What kinds of algorithm(s) can solve this problem?

Some Segmentation Algorithms

Divisive clustering Hierarchical clustering K-means clustering Mean shift clustering Graph cuts More next time ...

Segmentation as Clustering

Segmentation can be treated as a clustering problem

Divisive Clustering

Start with whole image in one cluster

Iterate:

- Find cluster with largest intra-cluster variation
- Split into two pieces that yield largest inter-cluster distance

Divisive Clustering

Start with whole image in one cluster

Iterate:

- Find cluster with largest intra-cluster variation
- Split into two pieces that yield largest inter-cluster distance

Divisive Clustering

Start with whole image in one cluster

Iterate:

- Find cluster with largest intra-cluster variation
- Split into two pieces that yield largest inter-cluster distance

Start with each pixel in its own cluster

Iterate:

- Find pair of clusters with smallest inter-cluster distance
- Merge

Start with each pixel in its own cluster

Iterate:

- Find pair of clusters with smallest inter-cluster distance
- Merge

Start with each pixel in its own cluster

Iterate:

- Find pair of clusters with smallest inter-cluster distance
- Merge

Start with each pixel in its own cluster

Iterate:

- Find pair of clusters with smallest inter-cluster distance
- Merge

Start with each pixel in its own cluster

Iterate:

- Find pair of clusters with smallest inter-cluster distance
- Merge

Start with each pixel in its own cluster

Iterate:

- Find pair of clusters with smallest inter-cluster distance
- Merge

Start with each pixel in its own cluster

Iterate:

- Find pair of clusters with smallest inter-cluster distance
- Merge

Start with each pixel in its own cluster

Iterate:

- Find pair of clusters with smallest inter-cluster distance
- Merge

Conservative stopping criteria yields "superpixels", which can be used as starting point for more complex algorithms

Problems with These Algorithms?

Problems with These Algorithms

Greedy

- Decisions made early in process dictate final result
- Making "good" early decisions is hard/expensive
 - Many possibilities at each iteration
 - Computing "good" merge or split is expensive

Heuristics to speed things up:

- For agglomerative clustering, approximate each cluster by average for distance computations
- For divisive clustering, use summary (histogram) of a region to compute split

Some Segmentation Algorithms

Divisive clustering Hierarchical clustering k-means clustering <---Mean shift clustering Graph cuts More next time

Instead of merging or splitting, start out with the clusters and move them around

- 1. Pick number of clusters *k*
- 2. Randomly scatter k "cluster centers" in color space
- 3. Repeat:

a. Assign each data point to its closest cluster centerb. Move each cluster center to the mean of the points assigned to it

Results of k-Means Clustering

Original Image

k-means, k=5

k-means, k=11

Results of k-Means Clustering

Sample clusters with *k*-means clustering based on color

k-Means Pros and Cons?

k-Means Pros and Cons

Pros

• Very simple method

Cons

- Need to pick K
- Converges to a local minimum
- Sensitive to initialization
- Sensitive to outliers
- Only finds "spherical" clusters

Sensitive to outliers

Spherical clusters

Some Segmentation Algorithms

Divisive clustering Hierarchical clustering k-means clustering Mean shift clustering < Graph cuts More next time

Seek modes (peaks) of density in feature space

Image

Feature space (color values)

Algorithm:

- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Cluster all data points in the attraction basin of a mode

- Separate segment for each mode
- Assign points to segments based on which mode is at the end of their mean shift trajectories

Mean Shift Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean Shift Results

Mean Shift Pros and Cons?

Mean Shift Pros and Cons

Pros

- Finds variable number of modes
- Does not assume spherical clusters
- Just a single parameter (window size)
- Robust to outliers

Cons

- Output depends on window size
- Computationally expensive
- Does not scale well with dimension of feature space

Some Segmentation Algorithms

Divisive clustering Hierarchical clustering k-means clustering Mean shift clustering Graph cuts 🦳 🗲 More next time

Create weighted graph:

- Nodes = pixels in image
- Edge between pairs of pixels
- Edge weight = similarity (intensity, color, texture, etc.)

Intuition: partition graph into disconnected segments by removing edges that have low cost (low similarity)

- Similar pixels should be in the same segments
- Dissimilar pixels should be in different segments

Example by S. Seitz

Graph cut

- Set of links whose removal makes a graph disconnected
- Partitions the graph (defines a segmentation)
- Cut cost = sum of costs of all edges in set

Can define arbitrary similarity function between pixels

Example by L. Lazebnik

Simple similarity function:

- Suppose we represent each pixel by a feature vector x, and define a distance function appropriate for this feature representation
- Then we can convert the distance between two feature vectors into an affinity with the help of a generalized Gaussian kernel:

$$\exp\left(-\frac{1}{2\sigma^2}\operatorname{dist}(\mathbf{x}_i,\mathbf{x}_j)^2\right)$$

More sophisticated similarity functions:

• Difference of histograms built from properties of pixels in optimizally oriented hemi-circles

More sophisticated similarity functions:Similarity based on intervening contours

W(p1,p2) >> W(p1,p3) as p1 and p2 are more likely to belong to the same region than are p1 and p3, which are separated by a strong boundary.

Now, need to find best cut. How?Want to partition nodes based on similarities

Walle to particion nodes sased on similaritie

Min-cut

- Find cut with minimum cost
- Fast (polynomial-time) algorithm

Min-cut

- Find cut with minimum cost
- Fast (polynomial-time) algorithm
- Not always the best choice

Normalized Cut

• Find minimum cut "normalized by segment size"

$$\frac{w(A,B)}{w(A,V)} + \frac{w(A,B)}{w(B,V)}$$

w(A, B) = sum of weights of all edges between A and B

Slide by S. Seitz

Normalized Cut

- No polynomial-time algorithm to find optimal cut
- Can use an approximation based on eigen-analysis of the graph adjacency matrix

http://www.cs.berkeley.edu/~fowlkes/BSE/

http://www.cs.berkeley.edu/~fowlkes/BSE/

Graph Cuts Pros and Cons

Pros

- Generic framework, can be used with many different features and affinity formulations
- Fast and practical for interactive foreground-background segmentation

Cons

• High storage requirement and time complexity for automatic segmentation
Summary

Segmentation:

• Partitioning image into coherent regions

Algorithms:

- Divisive and hierarchical clustering
- k-means clustering
- Mean shift clustering
- Graph cuts
- More next time ...

Applications

• Image processing, object recognition, interactive image editing, etc.