

Goal

Extract “structural features” from an image

 Non-accidental
properties

Goal

What types of “structure” are in this image?

Goal

What types of “structure” are in this image?
* Straight lines
* Parallel lines
* Symmetric

\
pairs of lines ‘
.
* Trapezoids
* Monochromatic D
regions
\

* etc.

Goal

What types of “structure” are in this image?

Goal

What types of “structure” are in this image?
* Circles

* Ellipses

* Symmetries in
color and texture

& elc

This Lecture

Algorithms for “structure detection”
* Line detection
* Circle detection
* Symmetry detection

Iine Detection

| et’s first consider how to detect lines

9 _

Input Output

Iine Detection

| et’s first consider how to detect lines

2 ﬁﬁ

Input Overlay

Iine Detection

Desirable properties of a line detection algorithm?

Iine Detection

Desirable properties of a line detection algorithm:
* Straight, long lines only
* Few missed or extra lines
* Provides confidence of

prediction for each pixel - -

e Robust to differences
in occlusion, noise,
scale, rotation, translation,
slight non-straightness,
brightness, etc.

* Efficient computation

Iine Detection

Not the same as edge detection:

* Edges are small-scale,
local properties

* Lines are large-scale,
structural properties

oy A

Iine Detection

Applications:
* Removing radial distortion
* Camera pose estimation
* Segmentation
* Scene classification
* Object detection \\

e, //
——

Iine Detection

Applications:

Removing radial distortion
Camera pose estimation
Segmentation

Scene classification
Object detection

etc.

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=b7tWQQkjIdoQAM&tbnid=2MQKI35V0uJ_UM:&ved=0CAUQjRw&url=http://www.mmorph.com/html/mmdemos/mmdairport.html&ei=bptAUoSTCpjH4AOvlIBY&bvm=bv.52434380,d.dmg&psig=AFQjCNE9pF3lq9Xtb8K736_TlvAUPyXQ-g&ust=1380052203792176

Iine Detection

Please propose a line detection algorithm

) _

Input Output

Iine Detection

OK, but what about this harder example?

Output

This one?

Iine Detection

/

Output

/4

Iine Detection

Two common algorithms:
* RANSAC
* Hough transform

Iine Detection

Two common algorithms:
* RANSAC = €=
* Hough transform

RANSAC in General

RANdom SAmple Consensus

Take many random samples of data
* Compute fit for each sample
* See how many points agree
* Remember the best

RANSAC for Line Detection

At beginning:

* Compute gradient direction N and magnitude G

Iterate:
* Randomly choose a pixel p
* Choose a line L through p

* Compute how well
other pixels “support” L

At end:

* Report the line L* with
the most “support”

RANSAC for Line Detection

At beginning:
* Compute gradient direction N and magnitude G

Iterate:
* Randomly choose a pixel p

e Choose a

* Compute
other pixe

At end:

ine L through p

how well

s “support” L

* Report the line L* with J
the most “support” o e °, o, °

< o <

Gradient Magnitude (G)

RANSAC for Line Detection

At beginning:
* Compute gradient direction N and magnitude G
Iterate:

* Randomly choose a pixel p
* Choose a line L through p

* Compute how well g . £, o
other pixels “support” L D %o o o0 o e
At end: ¥ e o= %%% °
* Report the line L* with PR
the most “support” . . o °, o, °

< o <
o <

Point p and Normal N(p)

RANSAC for Line Detection

At beginning:
* Compute gradient direction N and magnitude G

Iterate:
* Randomly choose a pixel p

* Choose a line L through p 4
* Compute how well °°“°;o°‘/ N(p) R
other pixels “support” L [OOSR °°
At end: e L T °°
* Report the line L* with s . T .
the most “support” R T

< o <

Line L through p

RANSAC for Line Detection

At beginning:

* Compute gradient direction N and magnitude G

lterate:
* Randomly
e Choose a

* Compute
other pixe

At end:

* Report the line L* with
the most “support”

choose a pixel p
ine L through p

how well

s “support” L

°°
O,
°°
&

3
<
< o < o

Line L through p

RANSAC for Line Detection

At beginning:
* Compute gradient direction N and magnitude G

lterate: Support(L) =) G(g) IN®) - N(@)]
* Randomly choose a pixel p k2

* Choose a line L through p

* Compute how well
other pixels “support” L

At end: SN N(op
* Report the line L* with A °
the most “support” ‘inliers™ .

°
° © e °

A °
° °©

Compute support

RANSAC for Line Detection

At beginning:
* Compute gradient direction N and magnitude G
Iterate:

* Randomly choose a pixel p
* Choose a line L through p

* Compute how well Sog, .
other pixels “support” L e P
At end: ¥ e o= %%%
* Report the line L* with s . T e

the most “support” o e L

RANSAC for Line Detection

At beginning:
* Compute gradient direction N and magnitude G
Iterate:

* Randomly choose a pixel p
* Choose a line L through p

* Compute how well Sog, . £, o
other pixels “support” L e P
At end: ¥ e o= %%% °
* Report the line L* with PR

the most “support”

4]

A °
o °©

Point p and Normal N(p)

RANSAC for Line Detection

At beginning:

* Compute gradient direction N and magnitude G

Iterate:
* Randomly choose a pixel p
* Choose a line L through p

* Compute how well o . £, o
other pixels “support” L g o o

At end:

* Report the line L* with
the most “support”

< o <

Line L through p

RANSAC for Line Detection

At beginning:
* Compute gradient direction N and magnitude G
lterate: Support(L) = Z G(q) IN() - N(q)|
* Randomly choose a pixel p k2
* Choose a line L through p :
e Compute how well %°°°:a% . RO
other pixels “support” L TN L am ® ot

At end:

* Report the line L* with
the most “support”

Compute support

RANSAC for Line Detection

At beginning:

* Compute gradient direction N and magnitude G

Iterate:
* Randomly choose a pixel p
* Choose a line L through p

* Compute how well
other pixels “support” L

At end:

* Report the line L* with
the most “support”

Line L* with most support

RANSAC for Line Detection

Many possible variants:
* How to choose L?

* Point (and local gradient)
* Point and angle

* Two points

* Three points

* efc.

* How compute “support” for L?
* 2 G(@) [N(p)*N(@)|
* Optimize L to fit “inliers”

* etc.

RANSAC for Line Detection

Many possible variants:
* How to choose L?

* Point (and local gradient)
* Point and angle
* Two points

* Three points

SR (e) ° o = o

Line through point with angle

* How compute “support” for L?
* 2 G(@) [N(p)*N(@)|
* Optimize L to fit “inliers”

* etc.

RANSAC for Line Detection

Many possible variants:
* How to choose L?

* Point (and local gradient)
* Point and angle
* Two points

* Three points

* efc.

Line through two points

* How compute “support” for L?
* 2 G(@) [N(p)*N(@)|
* Optimize L to fit “inliers”

* etc.

RANSAC for Line Detection

Many possible variants:
* How to choose L?

* Point (and local gradient)
* Point and angle
* Two points

* Three points

* etc. ° i °

Line through three points

* How compute “support” for L?
* 2 G(@) [N(p)*N(@)|
* Optimize L to fit “inliers”

* etc.

RANSAC for Line Detection

Many possible variants:
* How to choose L?

* Point (and local gradient)

Support(1) =) G(@) IN() - N(@)|

el

* Point and angle
* Two points
* Three points

* efc.

* How compute “support” for L?

* 2 G(g) [N(p)*N(g)|
* Optimize L to fit “inliers”

* etc.

RANSAC for Line Detection

Many possible variants:
* How to choose L?

* Point (and local gradient)

Support(1) =) G(@) IN() - N(@)|

el

* Point and angle
* Two points
* Three points

* efc.

* How compute “support” for L?

* 2 G(g) [N(p)*N(g)|
* Optimize L to fit “inliers”

* etc.

RANSAC for Line Detection

At beginning:

* Compute gradient direction N and magnitude G

Iterate: : How many iterations?
* Randomly choose a pixel p What is running time?

* Choose a line L through p

* Compute how well
other pixels “support” L

At end:

* Report the line L* with
the most “support”

RANSAC for Line Detection

S = # samples (iterations)
T = time to evaluate each sample
n = width/height of image
d = degrees of freedom in
line parameterization

Running time = O (ST) = O(n9)
e S = O(ndM
* T =0()

RANSAC in General

RANdom SAmple Consensus

Take many random subsets of data
* Compute fit for each sample
* See how many points agree
* Remember the best

What else could this algorithm detect?

RANSAC for Circle Detection

Detecting circles:
* Randomly choose three
pixels p1, p2, and p3
* Compute a circle C
through p1, p2, and p3

* Compute how well
other pixels “support” C

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

RANSAC for Circle Detection

Detecting circles:

* Randomly choose three
pixels p1, p2, and p3

* Compute a circle C
through p1, p2, and p3

* Compute how well
other pixels “support” C

What is the running time?

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

RANSAC for Circle Detection

Detecting circles:

* Randomly choose three
pixels p1, p2, and p3

* Compute a circle C
through p1, p2, and p3

* Compute how well
other pixels “support” C

How can we improve
the running time?

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

RANSAC for Circle Detection

Possible parameterizations for circles:
6 dof: three points
5 dof: two points, one angle

4 dof: one point, one angle,
one radius

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

RANSAC for Circle Detection

Possible parameterizations for circles:
6 dof: three points
5 dof: two points, one angle

4 dof: one point, one angle,
one radius

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

RANSAC for Circle Detection

Possible parameterizations for circles:
6 dof: three points
5 dof: two points, one angle

4 dof: one point, one angle,
one radius

3 dof: one point, one radius

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

Iine Detection

Two common algorithms:
* RANSAC
* Hough transform <=

Hough Transtorm

Like RANSAC, except visit pixels p one-by-one and
accumulate “support” (vote) for all primitives
containing p in hash table bins

Image Hough Space

Hough Transtorm

At beginning:

* Initialize all Hough space bins to zero

For each pixel sample p:

* Add support to all Hough space bins representing
primitives containing p

At end:
* Find the Hough space bin(s) with the most support

Hough Transtorm for Line Detection

Example:

Image Hough Space

Hough Transtorm for Line Detection

Example:

Image Hough Space

Hough Transtorm for Line Detection

Example:

Image Hough Space

Hough Transtorm for Line Detection

Example:

o
\ AN
\
\

Image Hough Space

Hough Transtorm for Line Detection

Example:

\\/ 2

P LN N

AN
N
%
/

Image

Hough Space

Hough Transtorm for Line Detection

Example:

Image Hough Space

Hough Transtorm for Line Detection

Example:

Image Hough Space

Hough Transtorm for Line Detection

Key question: how to parameterize Hough space?

Hough Transtorm for Line Detection

A 2 dof parameterization for lines: y = ax+b

Parameters: a and b

Hough Transtorm for Line Detection

Every point in image lies on “line” of bins in
Hough space with this parameterization

Image Hough Space

Hough Transtorm for Line Detection

Problems with slope / intercept parameterization
* Non-uniform sampling of directions
* Can't represent vertical lines

Hough Transtorm for Line Detection

Alternative: angle / distance parameterization
* Line represented as (r,0) where
e XCOSA+ysin@=r
e r=—cos@ex0 — sin@ey0
 N(L) =(cos &, sin 6)
o dist(L, p)=xcos@+ysing -r

Hough Transtorm for Line Detection

Alternative: angle / distance parameterization

* Line represented as (r,0) where
e XCOSA+ysin@=r
e r=—cos@ex0 — sin@ey0
 N(L) =(cos &, sin 6)

o dist(L, p)=xcosd+ysing -r
. L(r,) = L(r, HD

Hough Transtorm for Line Detection

Alternative: angle / distance parameterization

* Line represented as (r,6)
+ Uniform sampling of angles

-- Lines through point
lie on sinusoid in (r,)

Hough Transtorm for Line Detection

Alternative: angle / distance parameterization

* Line represented as (r,6)
+ Uniform sampling of angles

-- Lines through point
lie on sinusoid in (r,)

Hough Transtorm for Line Detection

Most people use angle / distance parameterization

* Line represented as (r,6)

(O]
-
)
c
]
)
=
o
o
y—
]
&)
c
©
i}
5L
()]

http://en.wikipedia.org/wiki/File:Hough-example-result-en.png

Hough Transtorm for Line Detection

Issue: How to select bucket size?

Hough Transtorm for Line Detection

Issue: How to select bucket size?
* Too small: poor performance on noisy data

* Too large: poor accuracy, possibility of false positives

Hough Transtorm for Line Detection

Issue: How to select bucket size?
* Too small: poor performance on noisy data

* Too large: poor accuracy, possibility of false positives

One solution:

* Large buckets + refinement o
e | |
" e
[® .) |
.
.? 2l
o in¥ . Initial guess
“ s » from Hough transform
““:
.
e

Hough Transtorm for Line Detection

Issue: How to select bucket size?
* Too small: poor performance on noisy data

* Too large: poor accuracy, possibility of false positives

One solution:

* Large buckets + refinement o
'
s®
Sz so®
.
i s Least-squares
o B0 G minimization
gv?’
.
e®
s®

Hough Transtorm for Line Detection

Issue: How to select bucket size?
* Too small: poor performance on noisy data

* Too large: poor accuracy, possibility of false positives

One solution:

‘\
. .
* Large buckets + refinement o v’
o’
¢
0“
"
e®
2®
"
.
°
" o
.
.
2

Hough Transtorm in General

What else can be detected with a Hough transform?
* Circles
* Ellipses
* Boxes
* Symmetries
eLle

Anything that can be parameterized
(in a small number of dimensions)

Hough Transtorm for Circle Detections

2D circles have 3 degrees of freedom
* Possible parameterization = 2D position and radius

So, each pixel gives rise to 2D sheet of values in
3D Hough space

T

N

Hough Transtorm for Symmetry Detection

Symmetry transform:
* Vote for midpoints between pixels

Hough Transtorm for Symmetry Detection

Symmetry transform:
* Vote for midpoints between pixels

Hough Transtorm for Symmetry Detection

Symmetry transform:
* Vote for midpoints between pixels

2D Circle 2D Rectangle 2D Triangle

Hough Transtorm for Symmetry Detection

Symmetry transform:
* Vote for midpoints between pixels

* Weight votes by functions of
distances, gradients, directions,
etc.

Reisfeld, et. al.

Hough Transtorm for Symmetry Detection

Symmetry transform:
* Used for eye detection!!!

I
A A

Input Hough Votes Feature detections

Hough Transform for Symmetry Detection

Reflective symmetry transform:
* Vote for bisector lines

Hough Transform and RANSAC

Very general computational techniques:

* Useful for detecting anything
that can be parameterized
in a low-dimensional space

Hough Transtform vs. RANSAC?

How are algorithms similar / different?

* This question is part of the thought exercise
for assignment #1

Assignment #1

COS 429: Computer Vision, Fall 2013
Assignment 1: Line Detection

Part 1: Thought Exercise

A. In one paragraph, please discuss the relative advantages of using the Hough transform versus RANSAC algorithms when detecting lines in images.
Under what conditions is one preferable to the other and vice-versa? How would this change for ellipses, triangles, or other more complex
primitives?

The finite size of an image implies that, on average, the length in pixels of the visible portions of lines close to the image center C is greater than that
of lines distant from C. Please provide a mathematical formula for how the Hough transform is biased by this effect and explain in a sentence or two
how you could counter this bias when computing the Hough transform.

Part 2: Programming Exercise

Your goal for this part of the assignment is to write a MATLAB program that predicts the locations of long, straight lines in an input image. This is just like
the warmup exercise, except that now you are detecting lines rather than eyes.

As in the previous assignment, "runme()" should write gray-level images in the output directory where the brightness of each pixel is proportional to the
predicted probability of finding a straight line at that pixel in the corresponding image in the input directory. For example, running runme() for the input
shown on the left below might produce the output shown in the middle. The rightmost image shows an overlay of the two (where the output has been added
to the red channel of the input). More examples can be found here.

Assignment #1

Detect edges locally
* Canny algorithm

Detect lines globally
* Hough algorithm

Combine

for each pixel p in the input image
output image(p) = max (E(p)®
L
end

- H(L)P -

(N(p) "N(L))Y)

Example

Assignment #1

gkt ot ne o

i s W N e e

S
e T o,
\ cadl
i et v e

e S Y (i =

] N M-
K== \ NS

yi —— \ ii e

e S e

Output

e
|
47
‘,}il..“ NS 1L

e orr e]

Input
i
|

==
L il 22

Hough Transform

Strong Hough lines

Canny edges

lication: Plane Detection in Lidar Data

Application: Plane Detection in Lidar Data

Lida'r,Scah of City Block after Plane Detection

lication: Plane Detection in Lidar Data

Application: Plane Detection in Lidar Data

Summary

Problem:
e Structure detection

Focus: line detection
e RANSAC
* Hough transform

Extensions
* Circles and other primitives
* Symmetries

Applications
* Segmentation
* Alignment

