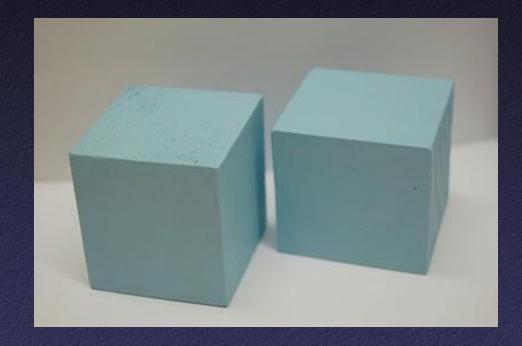
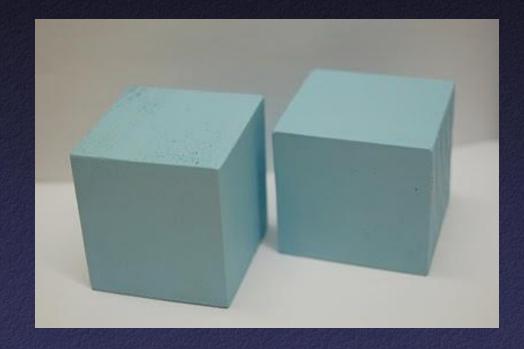
Feature Detection

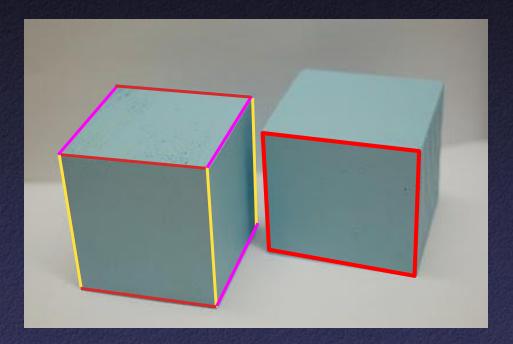
Extract "structural features" from an image

 Non-accidental properties

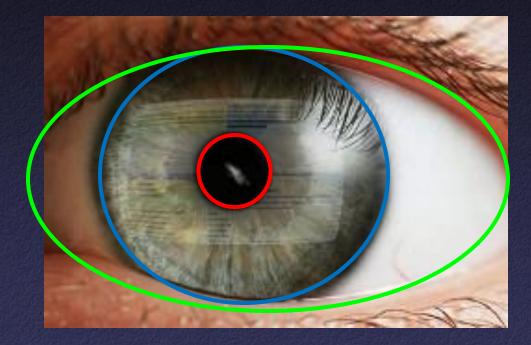




- Straight lines
- Parallel lines
- Symmetric pairs of lines
- Trapezoids
- Monochromatic regions
- etc.



- Circles
- Ellipses
- Symmetries in color and texture
- etc.

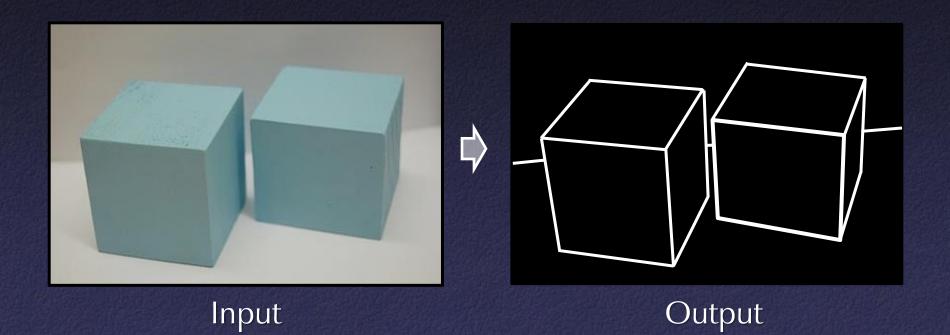


This Lecture

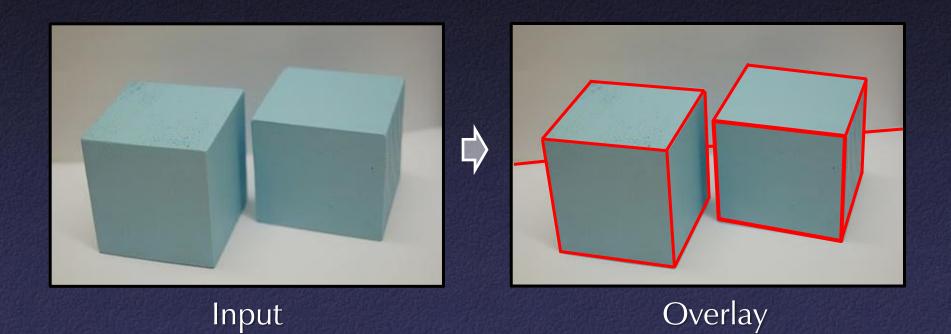
Algorithms for "structure detection"

- Line detection
- Circle detection
- Symmetry detection

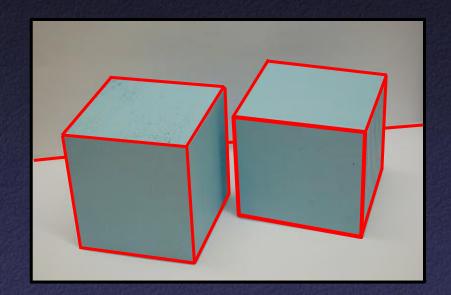
Let's first consider how to detect lines



Let's first consider how to detect lines

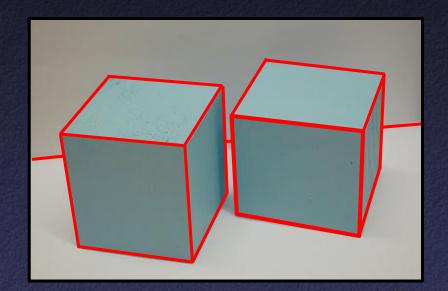


Desirable properties of a line detection algorithm?



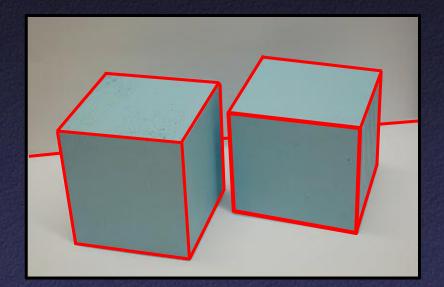
Desirable properties of a line detection algorithm:

- Straight, long lines only
- Few missed or extra lines
- Provides confidence of prediction for each pixel
- Robust to differences in occlusion, noise, scale, rotation, translation, slight non-straightness, brightness, etc.
- Efficient computation



Not the same as edge detection:

- Edges are small-scale, local properties
- Lines are large-scale, structural properties



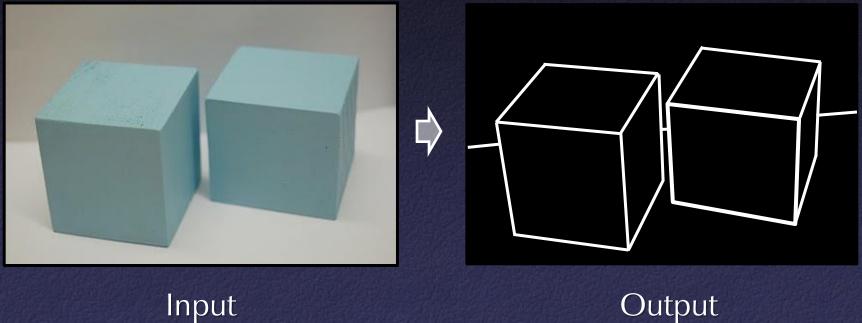
Applications:

- Removing radial distortion
- Camera pose estimation
- Segmentation
- Scene classification
- Object detection
- etc.

Applications:

- Removing radial distortion
- Camera pose estimation
- Segmentation
- Scene classification
- Object detection
- etc.

Please propose a line detection algorithm



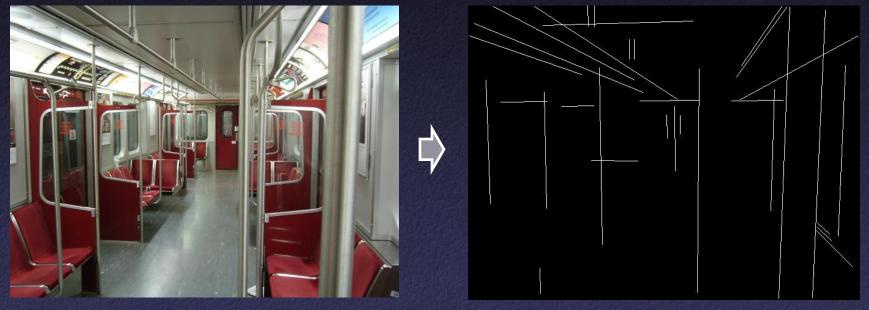
Output

OK, but what about this harder example?

Input

Output

This one?



Input

Output

Two common algorithms:

- RANSAC
- Hough transform

Two common algorithms:

- RANSAC <--
- Hough transform

RANSAC in General

RANdom SAmple Consensus

Take many random samples of data

- Compute fit for each sample
- See how many points agree
- Remember the best

At beginning:

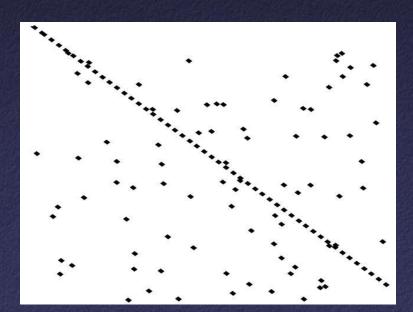
• Compute gradient direction N and magnitude G

Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

 Report the line L* with the most "support"



Input

At beginning:

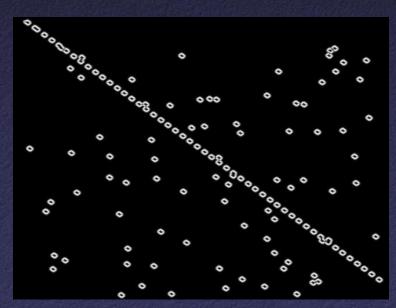
• Compute gradient direction N and magnitude G

Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

 Report the line L* with the most "support"



Gradient Magnitude (G)

At beginning:

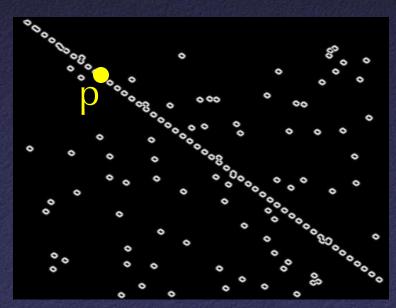
• Compute gradient direction N and magnitude G

Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

 Report the line L* with the most "support"



Point p and Normal N(p)

At beginning:

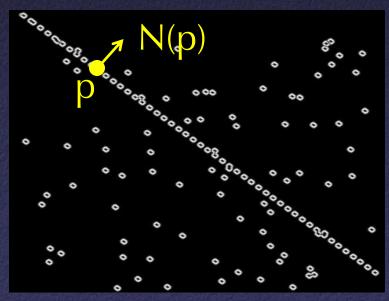
• Compute gradient direction N and magnitude G

Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

 Report the line L* with the most "support"



Line L through p

At beginning:

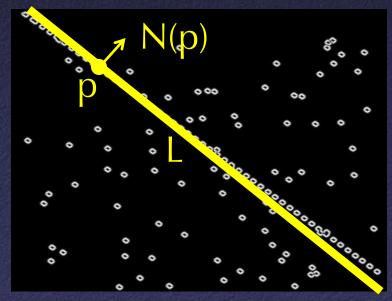
• Compute gradient direction N and magnitude G

Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

 Report the line L* with the most "support"



Line L through p

At beginning:

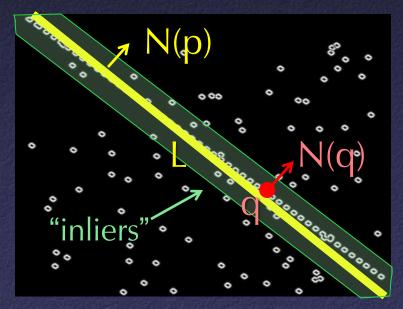
Compute gradient direction N and magnitude G

Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

 Report the line L* with the most "support" Support(L) = $\sum_{q \in L} G(q) |N(p) \cdot N(q)|$



Compute support

At beginning:

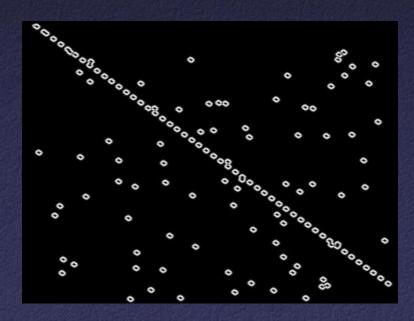
• Compute gradient direction N and magnitude G

Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

• Report the line L* with the most "support"



At beginning:

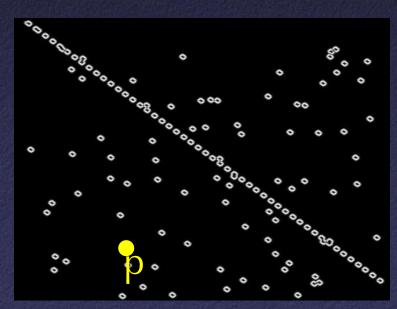
• Compute gradient direction N and magnitude G

Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

 Report the line L* with the most "support"



Point p and Normal N(p)

At beginning:

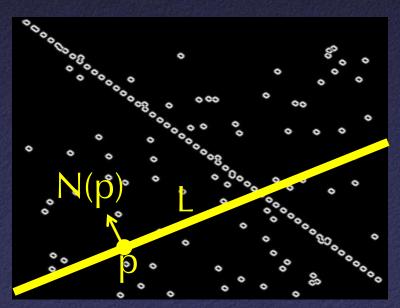
• Compute gradient direction N and magnitude G

Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

 Report the line L* with the most "support"



Line L through p

At beginning:

Compute gradient direction N and magnitude G

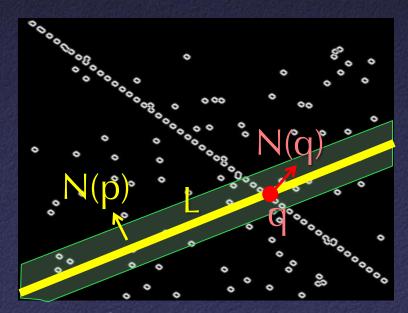
Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

• Report the line L* with the most "support"

Support(L) = $\sum_{q \in L} G(q) |N(p) \cdot N(q)|$



Compute support

At beginning:

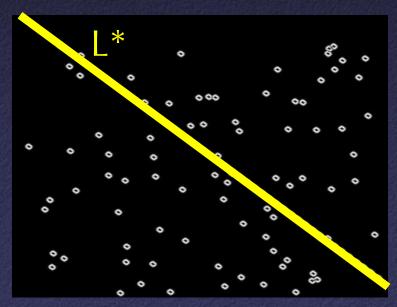
• Compute gradient direction N and magnitude G

Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

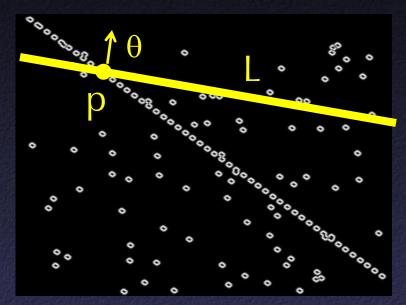
 Report the line L* with the most "support"



Line L* with most support

- How to choose L?
 - Point (and local gradient)
 - Point and angle
 - Two points
 - Three points
 - etc.
- How compute "support" for L?
 - $\sum G(q) | N(p) \bullet N(q) |$
 - Optimize L to fit "inliers"
 - etc.

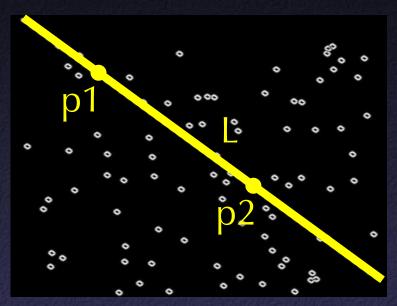
- How to choose L?
 - Point (and local gradient)
 - Point and angle
 - Two points
 - Three points
 - etc.



Line through point with angle

- How compute "support" for L?
 - $\sum G(q) | N(p) \bullet N(q) |$
 - Optimize L to fit "inliers"
 - etc.

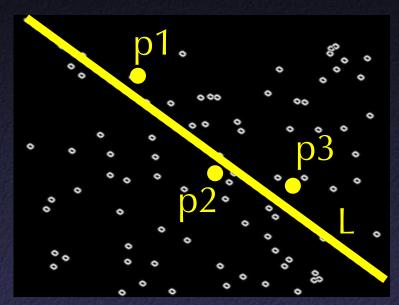
- How to choose L?
 - Point (and local gradient)
 - Point and angle
 - Two points
 - Three points
 - etc.



Line through two points

- How compute "support" for L?
 - $\sum G(q) | N(p) \bullet N(q) |$
 - Optimize L to fit "inliers"
 - etc.

- How to choose L?
 - Point (and local gradient)
 - Point and angle
 - Two points
 - Three points
 - etc.



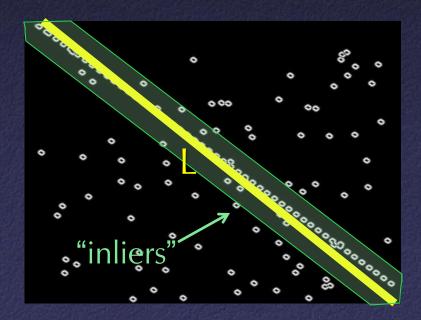
Line through three points

- How compute "support" for L?
 - $\sum G(q) | N(p) \bullet N(q) |$
 - Optimize L to fit "inliers"
 - etc.

Many possible variants:

- How to choose L?
 - Point (and local gradient)
 - Point and angle
 - Two points
 - Three points
 - etc.
- How compute "support" for L?
 - $\sum G(q) | N(p) \bullet N(q) |$
 - Optimize L to fit "inliers"
 - etc.

Support(L) = $\sum_{q \in L} G(q) |N(p) \cdot N(q)|$

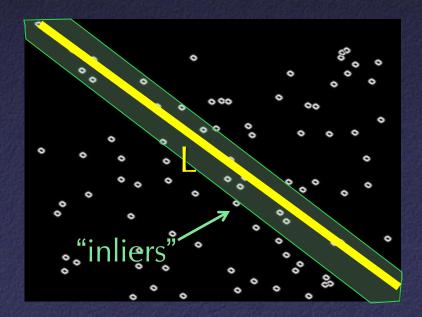


RANSAC for Line Detection

Many possible variants:

- How to choose L?
 - Point (and local gradient)
 - Point and angle
 - Two points
 - Three points
 - etc.
- How compute "support" for L?
 - $\sum G(q) | N(p) \bullet N(q) |$
 - Optimize L to fit "inliers"
 - etc.

Support(L) = $\sum_{q \in L} G(q) |N(p) \cdot N(q)|$



RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

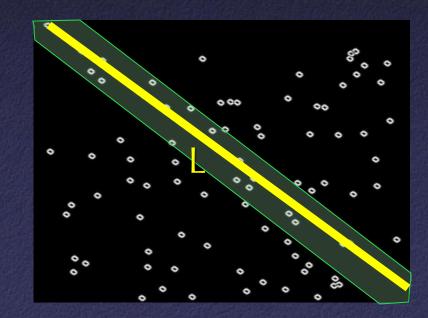
Iterate:

- Randomly choose a pixel p
- Choose a line L through p
- Compute how well other pixels "support" L

At end:

 Report the line L* with the most "support"

How many iterations? What is running time?

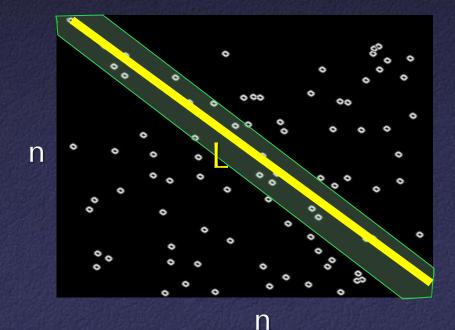


RANSAC for Line Detection

S = # samples (iterations)
T = time to evaluate each sample
n = width/height of image
d = degrees of freedom in
line parameterization

Running time = $O(ST) = O(n^d)$

- $S = O(n^{d-1})$
- T = O(n)



RANSAC in General

RANdom SAmple Consensus

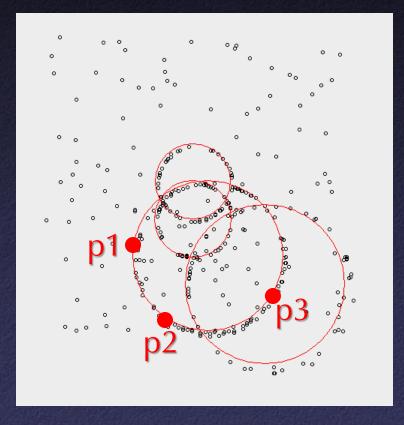
Take many random subsets of data

- Compute fit for each sample
- See how many points agree
- Remember the best

What else could this algorithm detect?

Detecting circles:

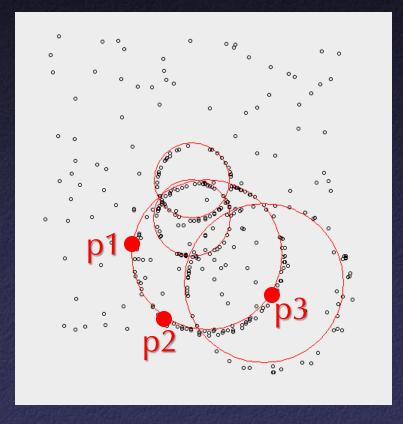
- Randomly choose three pixels p1, p2, and p3
- Compute a circle C through p1, p2, and p3
- Compute how well other pixels "support" C



Detecting circles:

- Randomly choose three pixels p1, p2, and p3
- Compute a circle C through p1, p2, and p3
- Compute how well other pixels "support" C

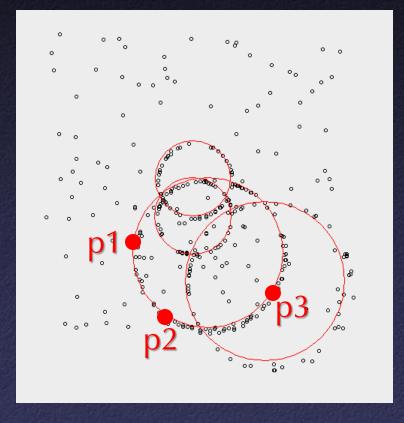
What is the running time?



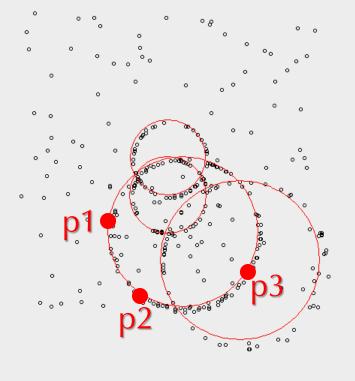
Detecting circles:

- Randomly choose three pixels p1, p2, and p3
- Compute a circle C through p1, p2, and p3
- Compute how well other pixels "support" C

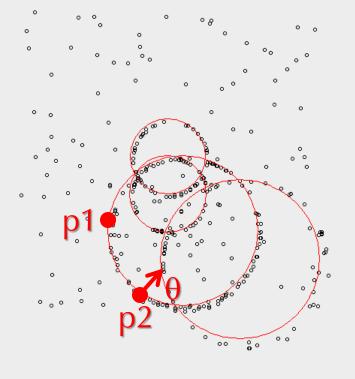
How can we improve the running time?



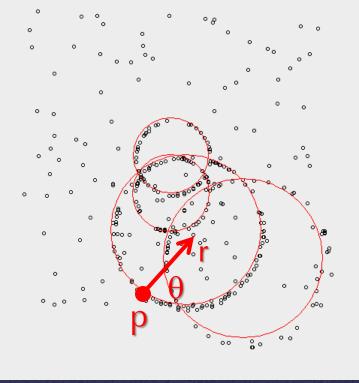
Possible parameterizations for circles:
6 dof: three points
5 dof: two points, one angle
4 dof: one point, one angle, one radius



Possible parameterizations for circles:
6 dof: three points
5 dof: two points, one angle
4 dof: one point, one angle, one radius



Possible parameterizations for circles:
6 dof: three points
5 dof: two points, one angle
4 dof: one point, one angle, one radius
3 dof: one point, one radius



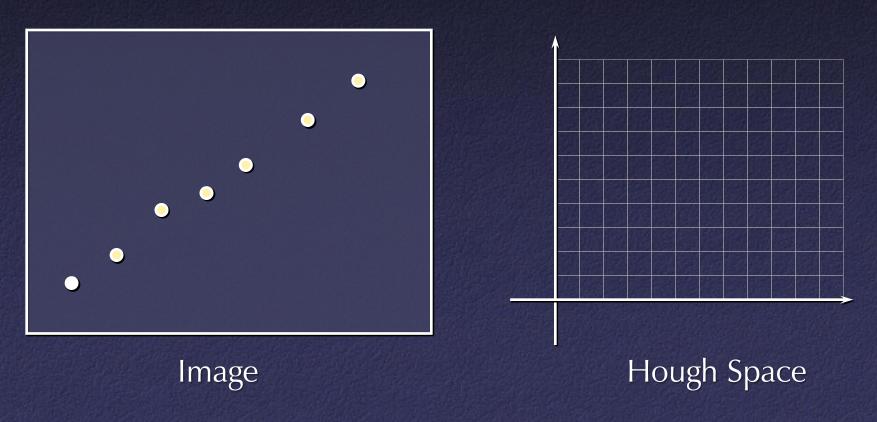
Line Detection

Two common algorithms:

- RANSAC
- Hough transform <---

Hough Transform

Like RANSAC, except visit pixels p one-by-one and accumulate "support" (vote) for all primitives containing p in hash table bins



Hough Transform

At beginning:

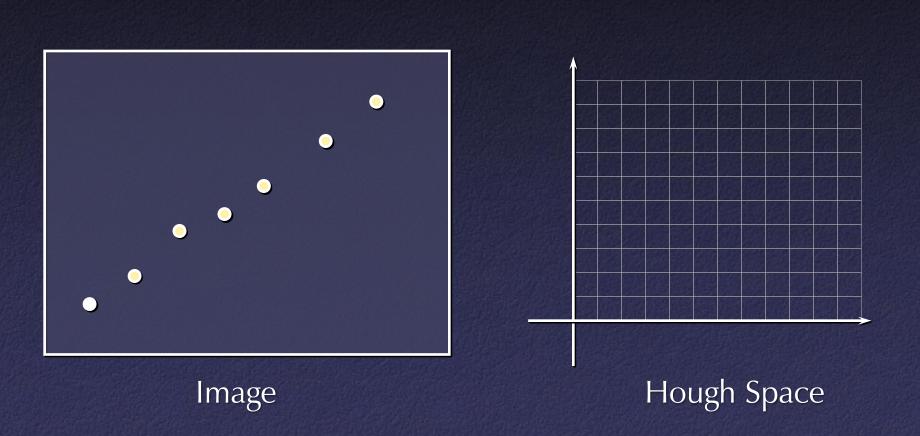
• Initialize all Hough space bins to zero

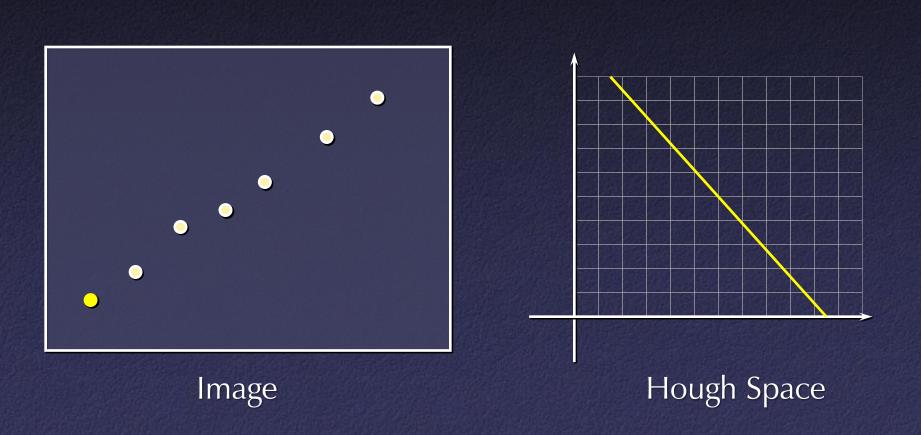
For each pixel sample p:

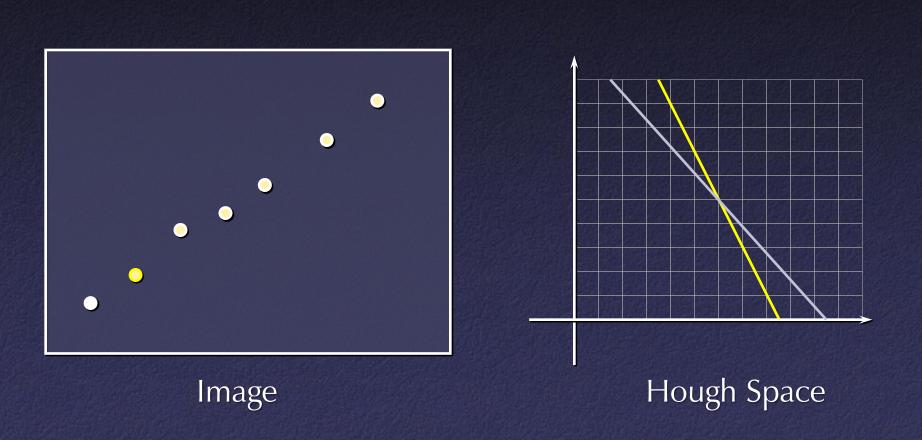
• Add support to all Hough space bins representing primitives containing p

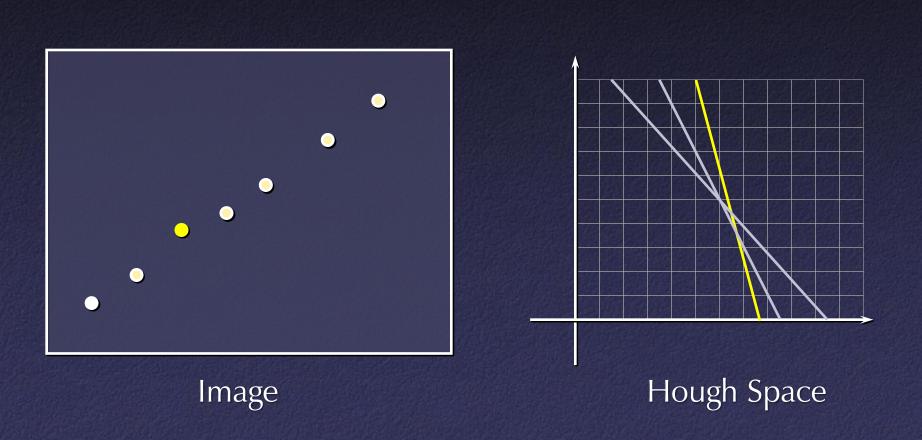
At end:

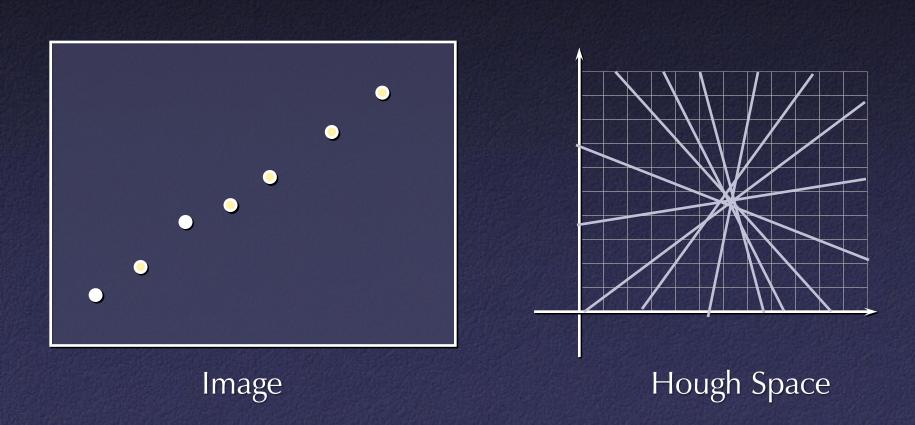
• Find the Hough space bin(s) with the most support



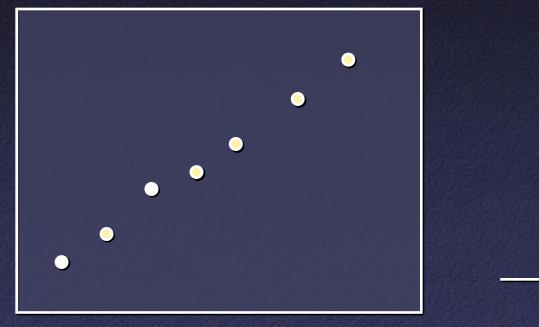


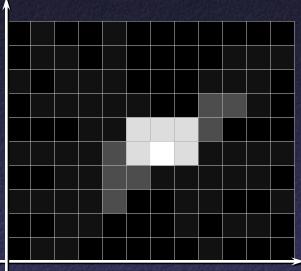






Example:

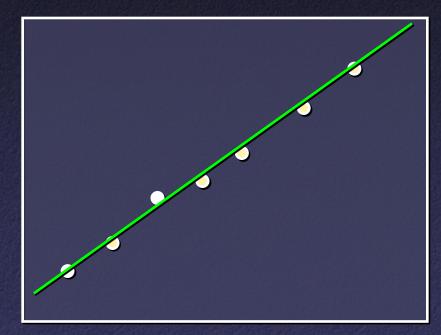


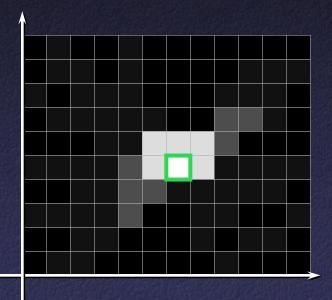


Hough Space

Image

Example:

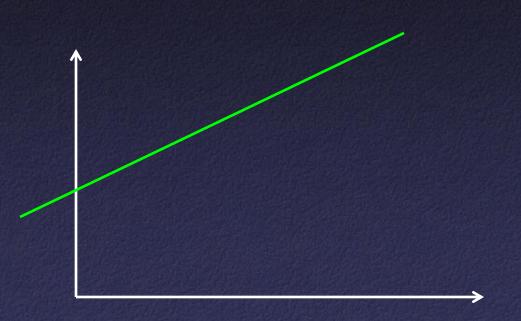




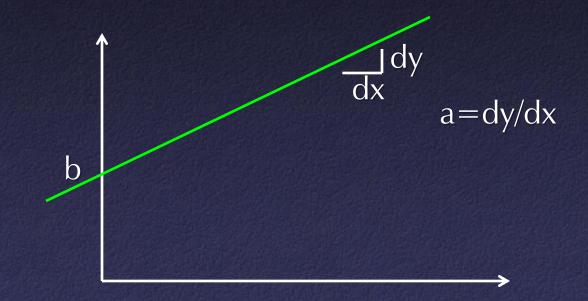
Image

Hough Space

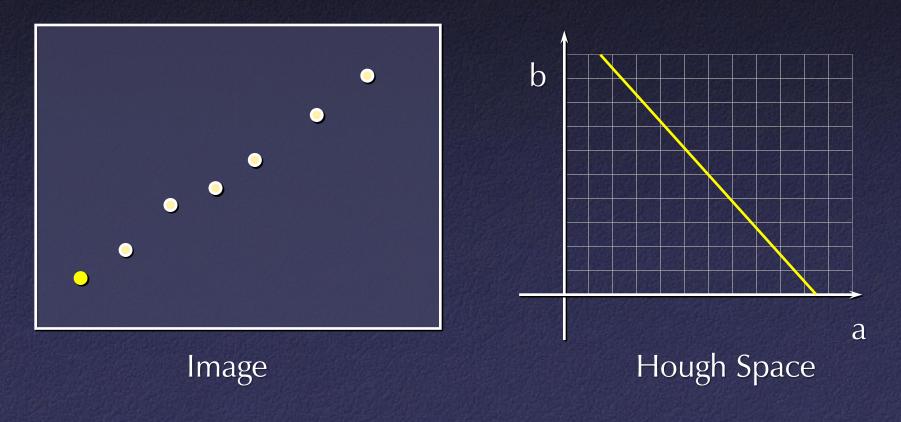
Key question: how to parameterize Hough space?



A 2 dof parameterization for lines: y = ax+bParameters: *a* and *b*

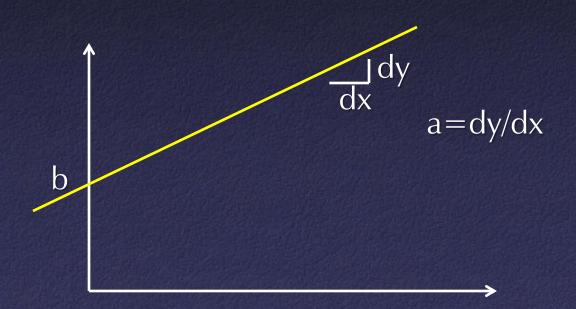


Every point in image lies on "line" of bins in Hough space with this parameterization

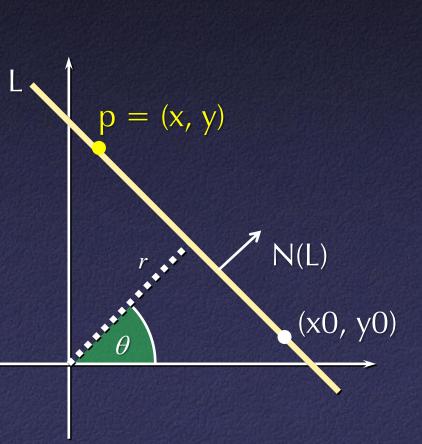


Problems with slope / intercept parameterization

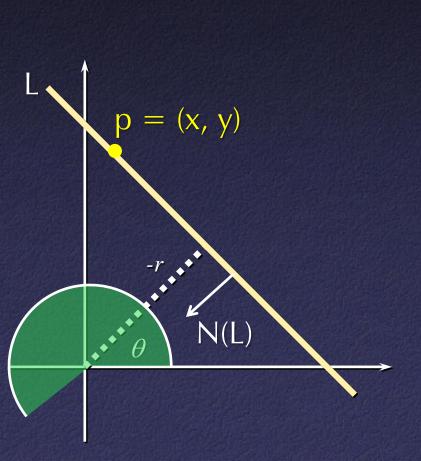
- Non-uniform sampling of directions
- Can't represent vertical lines



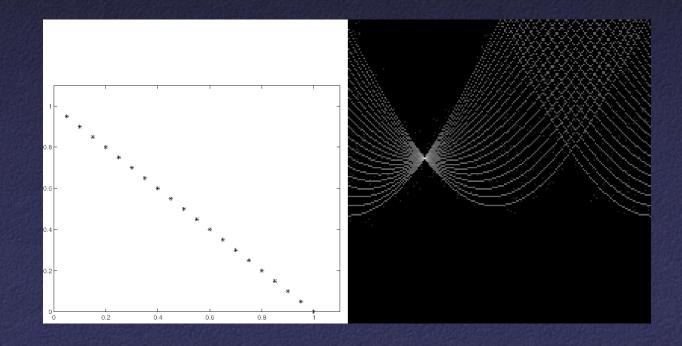
- Line represented as (r, θ) where
 - $x\cos\theta + y\sin\theta = r$
 - $r = -\cos\theta \cdot x\theta \sin\theta \cdot y\theta$
 - $N(L) = (\cos \theta, \sin \theta)$
 - $dist(L, p) = x \cos \theta + y \sin \theta r$



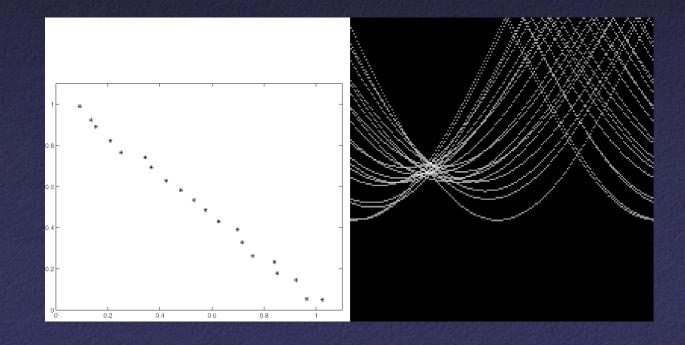
- Line represented as (r, θ) where
 - $x \cos \theta + y \sin \theta = r$
 - $r = -\cos\theta \cdot x\theta \sin\theta \cdot y\theta$
 - $N(L) = (\cos \theta, \sin \theta)$
 - $dist(L, p) = x \cos \theta + y \sin \theta r$
 - $L(r, \theta) \approx L(-r, \theta + \pi)$



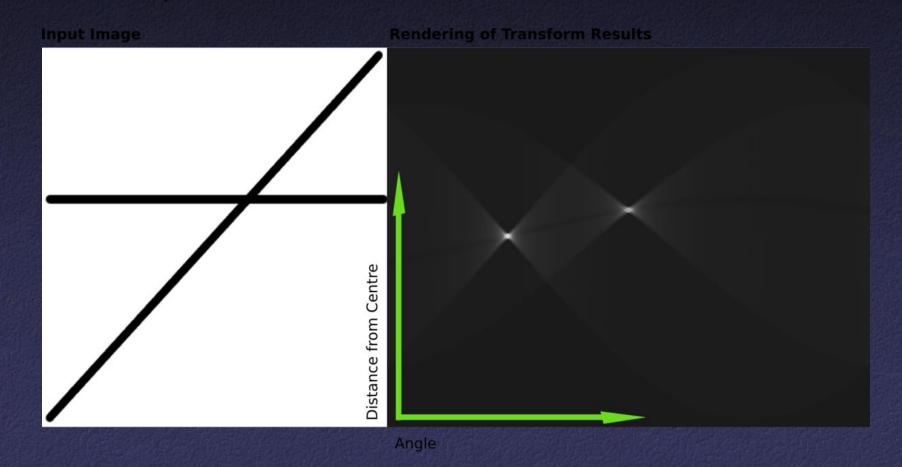
- Line represented as (r, θ)
 - + Uniform sampling of angles
 - -- Lines through point lie on sinusoid in (r, θ)



- Line represented as (r, θ)
 - + Uniform sampling of angles
 - -- Lines through point lie on sinusoid in (r, θ)



Most people use angle / distance parameterization • Line represented as (r, θ)



Issue: How to select bucket size?

Issue: How to select bucket size?

- Too small: poor performance on noisy data
- Too large: poor accuracy, possibility of false positives

Issue: How to select bucket size?

- Too small: poor performance on noisy data
- Too large: poor accuracy, possibility of false positives

One solution:

•

from Hough transform

Issue: How to select bucket size?

- Too small: poor performance on noisy data
- Too large: poor accuracy, possibility of false positives

One solution:

Least-squares minimization

Issue: How to select bucket size?

- Too small: poor performance on noisy data
- Too large: poor accuracy, possibility of false positives

One solution:

Hough Transform in General

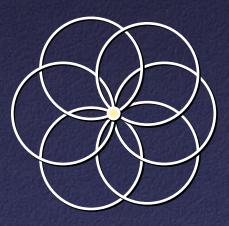
What else can be detected with a Hough transform?

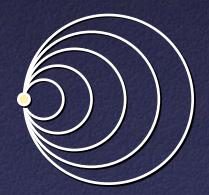
- Circles
- Ellipses
- Boxes
- Symmetries
- etc.

Anything that can be parameterized (in a small number of dimensions)

2D circles have 3 degrees of freedom

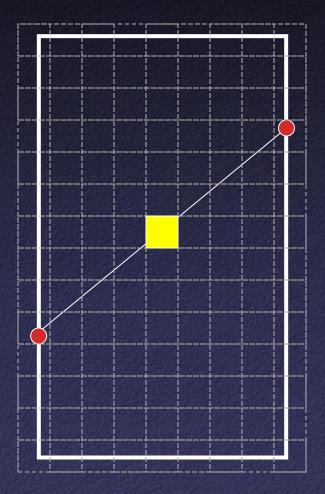
- Possible parameterization = 2D position and radius
- So, each pixel gives rise to 2D sheet of values in 3D Hough space





Symmetry transform:

• Vote for midpoints between pixels

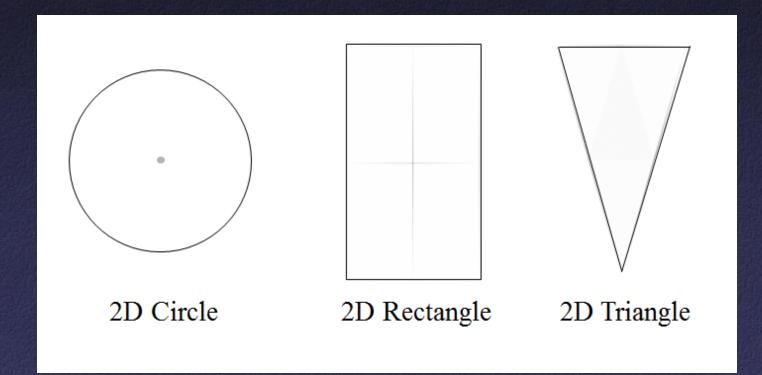


Symmetry transform:

• Vote for midpoints between pixels

Symmetry transform:

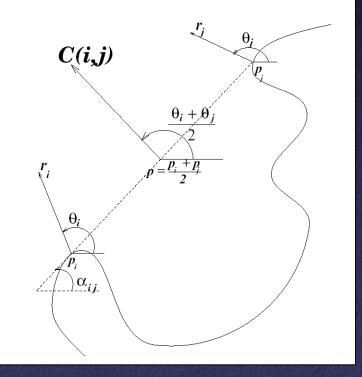
• Vote for midpoints between pixels



Symmetry transform:

- Vote for midpoints between pixels
- Weight votes by functions of distances, gradients, directions, etc.

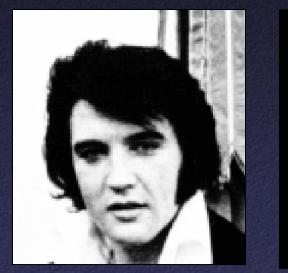
 $C(i,j) = D_{\sigma}(i,j)P(i,j)r_ir_j$

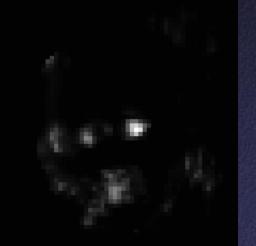


Reisfeld, et. al.

Symmetry transform:

• Used for eye detection!!!





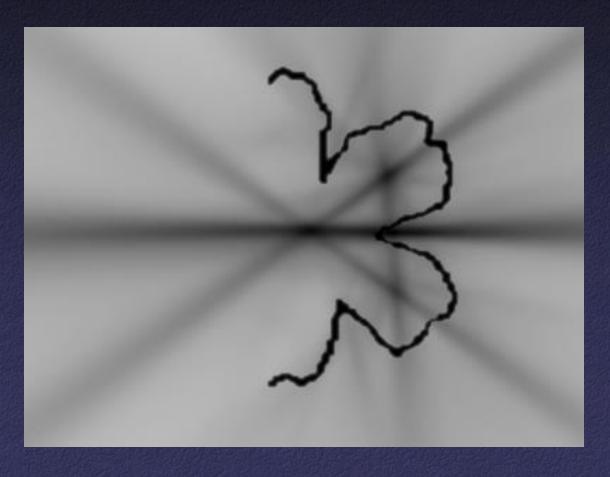
Input

Hough Votes

Feature detections

Reflective symmetry transform:

• Vote for bisector lines



Hough Transform and RANSAC

Very general computational techniques:

 Useful for detecting anything that can be parameterized in a low-dimensional space

Hough Transform vs. RANSAC?

How are algorithms similar / different?

• This question is part of the thought exercise for assignment #1

Assignment #1



Assignment #1

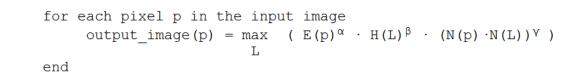
Detect edges locally

• Canny algorithm

Detect lines globally

Hough algorithm

Combine



Assignment #1 Example

Input

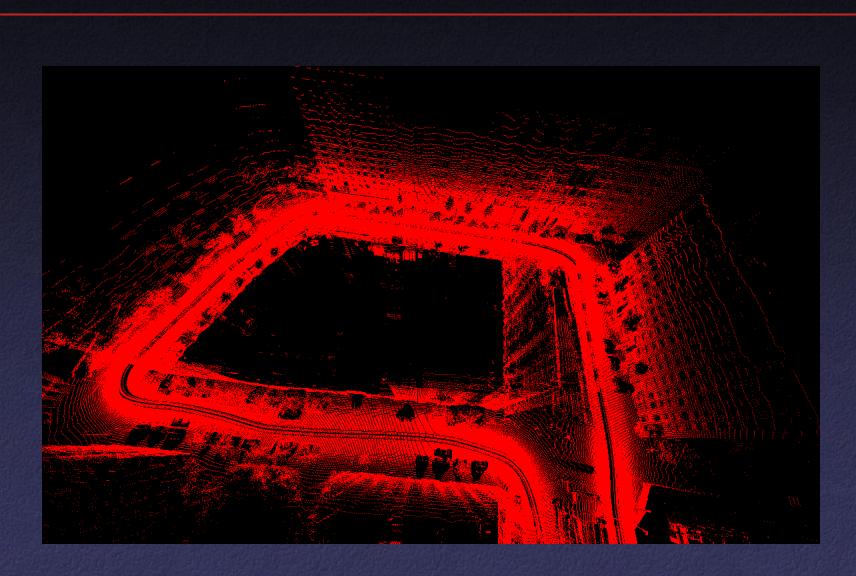
Output

Canny edges

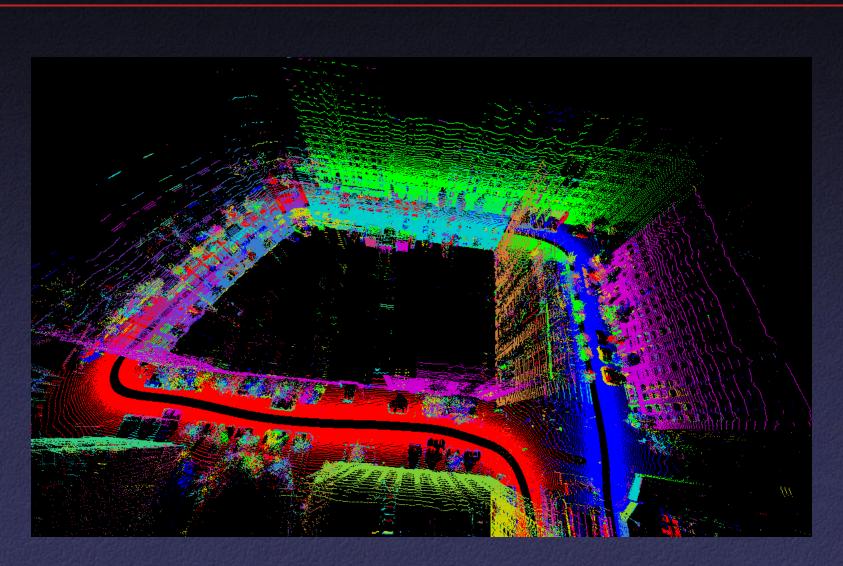
Strong Hough lines



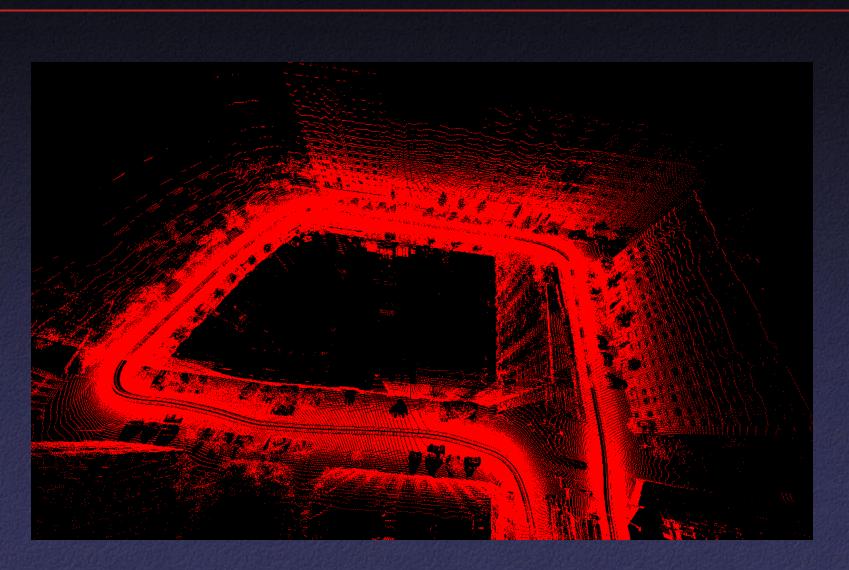
Hough Transform



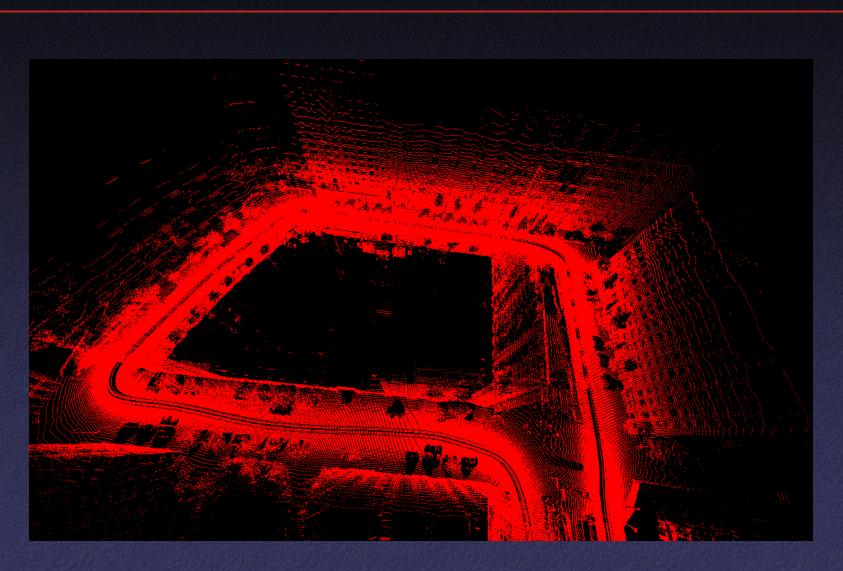
Lidar Scan of City Block



Lidar Scan of City Block after Plane Detection



Before Enforcing Planarity



After Enforcing Planarity

Summary

Problem:

• Structure detection

Focus: line detection

- RANSAC
- Hough transform

Extensions

- Circles and other primitives
- Symmetries

Applications

- Segmentation
- Alignment