
Feature Detection

Goal

Extract “structural features” from an image

• Non-accidental

properties

Goal

What types of “structure” are in this image?

Goal

What types of “structure” are in this image?

• Straight lines

• Parallel lines

• Symmetric

pairs of lines

• Trapezoids

• Monochromatic

regions

• etc.

Goal

What types of “structure” are in this image?

Goal

What types of “structure” are in this image?

• Circles

• Ellipses

• Symmetries in

color and texture

• etc.

This Lecture

Algorithms for “structure detection”

• Line detection

• Circle detection

• Symmetry detection

Line Detection

Let’s first consider how to detect lines

Input Output

Line Detection

Let’s first consider how to detect lines

Input Overlay

Line Detection

Desirable properties of a line detection algorithm?

Line Detection

Desirable properties of a line detection algorithm:

• Straight, long lines only

• Few missed or extra lines

• Provides confidence of

prediction for each pixel

• Robust to differences

in occlusion, noise,

scale, rotation, translation,

slight non-straightness,

brightness, etc.

• Efficient computation

Line Detection

Not the same as edge detection:

• Edges are small-scale,

local properties

• Lines are large-scale,

structural properties

Line Detection

Applications:

• Removing radial distortion

• Camera pose estimation

• Segmentation

• Scene classification

• Object detection

• etc.

Line Detection

Applications:

• Removing radial distortion

• Camera pose estimation

• Segmentation

• Scene classification

• Object detection

• etc.

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=b7tWQQkjIdoQAM&tbnid=2MQKI35V0uJ_UM:&ved=0CAUQjRw&url=http://www.mmorph.com/html/mmdemos/mmdairport.html&ei=bptAUoSTCpjH4AOvlIBY&bvm=bv.52434380,d.dmg&psig=AFQjCNE9pF3lq9Xtb8K736_TlvAUPyXQ-g&ust=1380052203792176

Line Detection

Please propose a line detection algorithm

Input Output

Line Detection

OK, but what about this harder example?

Input Output

Line Detection

This one?

Input Output

Line Detection

Two common algorithms:

• RANSAC

• Hough transform

Line Detection

Two common algorithms:

• RANSAC

• Hough transform

RANSAC in General

RANdom SAmple Consensus

Take many random samples of data

• Compute fit for each sample

• See how many points agree

• Remember the best

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

Input

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

Gradient Magnitude (G)

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

Point p and Normal N(p)

p

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

Line L through p

p

N(p)

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

Line L through p

L

p

N(p)

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

Compute support

q

N(q)

N(p)

L

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐿 = 𝐺 𝑞 |𝑁 𝑝 ∙ 𝑁 𝑞 |

𝑞 ∈ 𝐿

“inliers”

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”
p

Point p and Normal N(p)

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

Line L through p

L

p

N(p)

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

Compute support

q
L

N(p)

N(q)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐿 = 𝐺 𝑞 |𝑁 𝑝 ∙ 𝑁 𝑞 |

𝑞 ∈ 𝐿

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

Line L* with most support

L*

RANSAC for Line Detection

Many possible variants:

• How to choose L?

• Point (and local gradient)

• Point and angle

• Two points

• Three points

• etc.

• How compute “support” for L?

• ∑ G(q) |N(p)•N(q)|

• Optimize L to fit “inliers”

• etc.

RANSAC for Line Detection

Many possible variants:

• How to choose L?

• Point (and local gradient)

• Point and angle

• Two points

• Three points

• etc.

• How compute “support” for L?

• ∑ G(q) |N(p)•N(q)|

• Optimize L to fit “inliers”

• etc.

Line through point with angle

p

L

RANSAC for Line Detection

Many possible variants:

• How to choose L?

• Point (and local gradient)

• Point and angle

• Two points

• Three points

• etc.

• How compute “support” for L?

• ∑ G(q) |N(p)•N(q)|

• Optimize L to fit “inliers”

• etc.

Line through two points

p1

p2

L

RANSAC for Line Detection

Many possible variants:

• How to choose L?

• Point (and local gradient)

• Point and angle

• Two points

• Three points

• etc.

• How compute “support” for L?

• ∑ G(q) |N(p)•N(q)|

• Optimize L to fit “inliers”

• etc.

Line through three points

p1

p3

L
p2

RANSAC for Line Detection

Many possible variants:

• How to choose L?

• Point (and local gradient)

• Point and angle

• Two points

• Three points

• etc.

• How compute “support” for L?

• ∑ G(q) |N(p)•N(q)|

• Optimize L to fit “inliers”

• etc.

L

“inliers”

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐿 = 𝐺 𝑞 |𝑁 𝑝 ∙ 𝑁 𝑞 |

𝑞 ∈ 𝐿

RANSAC for Line Detection

Many possible variants:

• How to choose L?

• Point (and local gradient)

• Point and angle

• Two points

• Three points

• etc.

• How compute “support” for L?

• ∑ G(q) |N(p)•N(q)|

• Optimize L to fit “inliers”

• etc.

L

“inliers”

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐿 = 𝐺 𝑞 |𝑁 𝑝 ∙ 𝑁 𝑞 |

𝑞 ∈ 𝐿

RANSAC for Line Detection

At beginning:

• Compute gradient direction N and magnitude G

Iterate:

• Randomly choose a pixel p

• Choose a line L through p

• Compute how well

other pixels “support” L

At end:

• Report the line L* with

the most “support”

How many iterations?

What is running time?

L

RANSAC for Line Detection

Running time = O (ST) = O(n
d
)

• S = O(n
d-1

)

• T = O(n)

S = # samples (iterations)

T = time to evaluate each sample

n = width/height of image

d = degrees of freedom in

 line parameterization

L

n

n

RANSAC in General

RANdom SAmple Consensus

Take many random subsets of data

• Compute fit for each sample

• See how many points agree

• Remember the best

What else could this algorithm detect?

RANSAC for Circle Detection

Detecting circles:

• Randomly choose three

pixels p1, p2, and p3

• Compute a circle C

through p1, p2, and p3

• Compute how well

other pixels “support” C

p2

p1

p3

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

RANSAC for Circle Detection

Detecting circles:

• Randomly choose three

pixels p1, p2, and p3

• Compute a circle C

through p1, p2, and p3

• Compute how well

other pixels “support” C

What is the running time?

p2

p1

p3

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

RANSAC for Circle Detection

Detecting circles:

• Randomly choose three

pixels p1, p2, and p3

• Compute a circle C

through p1, p2, and p3

• Compute how well

other pixels “support” C

How can we improve

the running time?

p2

p1

p3

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

RANSAC for Circle Detection

Possible parameterizations for circles:

6 dof: three points

5 dof: two points, one angle

4 dof: one point, one angle,

 one radius

p2

p1

p3

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

RANSAC for Circle Detection

Possible parameterizations for circles:

6 dof: three points

5 dof: two points, one angle

4 dof: one point, one angle,

 one radius

p2

p1

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

RANSAC for Circle Detection

Possible parameterizations for circles:

6 dof: three points

5 dof: two points, one angle

4 dof: one point, one angle,

 one radius

3 dof: one point, one radius

p

r

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=siPv3rMtzAoj2M&tbnid=5GHN4797D1OYqM:&ved=0CAUQjRw&url=https://github.com/oleander/ransac-and-hough-transform-java&ei=F_FAUqzlMePl4APtq4DgCA&bvm=bv.52434380,d.dmg&psig=AFQjCNFGdUGJB4vCNAX298vgLSnW0PLX_A&ust=1380074124288956

Line Detection

Two common algorithms:

• RANSAC

• Hough transform

Hough Transform

Like RANSAC, except visit pixels p one-by-one and

accumulate “support” (vote) for all primitives

containing p in hash table bins

Image Hough Space

Hough Transform

At beginning:

• Initialize all Hough space bins to zero

For each pixel sample p:

• Add support to all Hough space bins representing

primitives containing p

At end:

• Find the Hough space bin(s) with the most support

Hough Transform for Line Detection

Example:

Image Hough Space

Hough Transform for Line Detection

Example:

Image Hough Space

Hough Transform for Line Detection

Example:

Image Hough Space

Hough Transform for Line Detection

Example:

Image Hough Space

Hough Transform for Line Detection

Example:

Image Hough Space

Hough Transform for Line Detection

Example:

Image Hough Space

Hough Transform for Line Detection

Example:

Image Hough Space

Hough Transform for Line Detection

Key question: how to parameterize Hough space?

Hough Transform for Line Detection

A 2 dof parameterization for lines: y = ax+b

Parameters: a and b

b

a=dy/dx

dy

dx

Hough Transform for Line Detection

Every point in image lies on “line” of bins in

Hough space with this parameterization

Image Hough Space

b

a

Hough Transform for Line Detection

Problems with slope / intercept parameterization

• Non-uniform sampling of directions

• Can’t represent vertical lines

b

a=dy/dx

dy

dx

Hough Transform for Line Detection

Alternative: angle / distance parameterization

• Line represented as (r,) where

• x cos + y sin = r

• r = – cos • x0 – sin • y0

• N(L) = (cos , sin)

• dist(L, p)= x cos + y sin - r

N(L)

L

(x0, y0)

p = (x, y)

r

Hough Transform for Line Detection

Alternative: angle / distance parameterization

• Line represented as (r,) where

• x cos + y sin = r

• r = – cos • x0 – sin • y0

• N(L) = (cos , sin)

• dist(L, p)= x cos + y sin - r

• L(r,) ≈ L(-r, + π)

-r

N(L)

L

p = (x, y)

Hough Transform for Line Detection

Alternative: angle / distance parameterization

• Line represented as (r,)

+ Uniform sampling of angles

-- Lines through point

 lie on sinusoid in (r,)

Hough Transform for Line Detection

Alternative: angle / distance parameterization

• Line represented as (r,)

+ Uniform sampling of angles

-- Lines through point

 lie on sinusoid in (r,)

Hough Transform for Line Detection

Most people use angle / distance parameterization

• Line represented as (r,)

http://en.wikipedia.org/wiki/File:Hough-example-result-en.png

Hough Transform for Line Detection

Issue: How to select bucket size?

Hough Transform for Line Detection

Issue: How to select bucket size?

• Too small: poor performance on noisy data

• Too large: poor accuracy, possibility of false positives

Hough Transform for Line Detection

Issue: How to select bucket size?

• Too small: poor performance on noisy data

• Too large: poor accuracy, possibility of false positives

One solution:

• Large buckets + refinement

Initial guess

from Hough transform

Hough Transform for Line Detection

Issue: How to select bucket size?

• Too small: poor performance on noisy data

• Too large: poor accuracy, possibility of false positives

One solution:

• Large buckets + refinement

Least-squares

minimization

Hough Transform for Line Detection

Issue: How to select bucket size?

• Too small: poor performance on noisy data

• Too large: poor accuracy, possibility of false positives

One solution:

• Large buckets + refinement

Hough Transform in General

What else can be detected with a Hough transform?

• Circles

• Ellipses

• Boxes

• Symmetries

• etc.

Anything that can be parameterized

(in a small number of dimensions)

Hough Transform for Circle Detections

2D circles have 3 degrees of freedom

• Possible parameterization = 2D position and radius

So, each pixel gives rise to 2D sheet of values in

3D Hough space

Hough Transform for Symmetry Detection

Symmetry transform:

• Vote for midpoints between pixels

Hough Transform for Symmetry Detection

Symmetry transform:

• Vote for midpoints between pixels

Hough Transform for Symmetry Detection

Symmetry transform:

• Vote for midpoints between pixels

Hough Transform for Symmetry Detection

Symmetry transform:

• Vote for midpoints between pixels

• Weight votes by functions of

distances, gradients, directions,

etc.

Reisfeld, et. al.

Hough Transform for Symmetry Detection

Symmetry transform:

• Used for eye detection!!!

Hough Votes Feature detections Input

Hough Transform for Symmetry Detection

Reflective symmetry transform:

• Vote for bisector lines

Hough Transform and RANSAC

Very general computational techniques:

• Useful for detecting anything

that can be parameterized

in a low-dimensional space

Hough Transform vs. RANSAC?

How are algorithms similar / different?

• This question is part of the thought exercise

for assignment #1

Assignment #1

Assignment #1

Detect edges locally

• Canny algorithm

Detect lines globally

• Hough algorithm

Combine

Assignment #1 Example

Hough Transform

Strong Hough lines Canny edges

Output Input

Application: Plane Detection in Lidar Data

Lidar Scan of City Block

Application: Plane Detection in Lidar Data

Lidar Scan of City Block after Plane Detection

Application: Plane Detection in Lidar Data

Before Enforcing Planarity

Application: Plane Detection in Lidar Data

After Enforcing Planarity

Summary

Problem:

• Structure detection

Focus: line detection

• RANSAC

• Hough transform

Extensions

• Circles and other primitives

• Symmetries

Applications

• Segmentation

• Alignment

