
Image Analysis 

  



Motivation 

Computer vision 

 

 Input: digital images 

 Output: information about the world 



Image Analysis 

Input is a regular array of discrete samples of a  

2D continuous function representing color 

 

 

 

Output is info about 

structure of image 

Color image 

e.g., Color at (x,y) 



Image Analysis 

For now, let’s consider only gray-level images 

e.g., Luminance at (x,y) 

Gray-level image 



Image Analysis 

For now, let’s ignore the discrete sampling 

Gray-level function 



Image Analysis 

For now, let’s consider only one horizontal scanline 

Gray-level function 

x 



Image Analysis 

How do we analyze 1D continuous functions? 



Image Analysis 

How do we analyze 1D continuous functions? 

• One useful tool is frequency analysis 

|F(u)| 
f(x) 

Spatial domain Frequency domain 



Frequency Analysis 

Any f(x) can be written as a sum of periodic functions 

|F(u)| 



Frequency Analysis 

Fourier transform of function f is 

 

 

 

F(u) is a function of frequency u describing how 

much of each frequency f contains 



Frequency Analysis 

Fourier transform has real and imaginary parts: 



Frequency Analysis 

How does this work for 2D functions? 



Frequency Analysis 

The Fourier Transform is separable: 



Frequency Analysis 

Examples: 

f(x,y) |F(u,v)| 
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Examples: 
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Frequency Analysis 

Examples: 

f(x,y) |F(u,v)| 



Frequency Analysis 

Examples: Gaussian  

f(x,y) |F(u,v)| 
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Frequency Analysis 

Examples: 

f(x,y) 

|F(u,v)| 



Frequency Analysis 

Examples: 

f(x,y) 

|F(u,v)| 



Frequency Analysis 

The Fourier transform has an inverse: 

 

 



Application 1: Reducing Noise 

f(x,y) 

Zoomed 

Noise is unwanted  

(random) energy in  

high frequencies 

|F(u,v)| 



Application 1: Reducing Noise 

f(x,y) 

|F(u,v)| 

Original High frequencies removed 



Application 1: Reducing Noise  

Can reduce noise by convolving image with a 

Gaussian filter 
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Gaussian Filters 

What is a Gaussian filter? 

 

• One-dimensional Gaussian 

 

 

 

• Two-dimensional Gaussian 
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Gaussian Filters 



Gaussian Filters 



Convolution 

How do we convolve an image with a filter? 
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Convolution 

Discrete convolution 

• Each output pixel is a linear combination of input pixels 

in neighborhood with weights prescribed by filter 

Input Image Output Image 

* 

Filter 
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Convolution 

Discrete convolution 
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Convolution 

Discrete convolution 

• Each output pixel is a linear combination of input pixels 

in neighborhood with weights prescribed by filter 

Input Image Output Image 

* 

Filter 



Convolution 

Discrete convolution 

• Naïve process takes O(n
2
m

2
) … OK for small filters (m) 

* 

m 

n
 

n
 



Fourier Transform and Convolution 

Useful fact: multiplication in frequency domain is 

same as convolution in spatial domain 

 

 f(x) * g(x) = F -1 
( F (f(x)) F (g(x)) ) 



Fourier Transform and Convolution 

This provides a faster way to perform convolution 

for large filters: 

 

• Fast Fourier Transform (FFT) takes time 

      O(n log n) 

 

• Thus, convolution can be performed in time 

       O(n log n + m log m) 



Fourier Transform and Convolution 

Also, helps us reason about effects of specific filters 

f(x,y) 

|F(u,v)| 
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Application 2: Reconstructing Frescoes 



Application 2: Reconstructing Frescoes 

Akrotiri = buried city discovered in 1967 



Application 2: Reconstructing Frescoes 

Many walls were decorated with wall paintings 



Application 2: Reconstructing Frescoes 

Many walls were decorated with wall paintings 



Application 2: Reconstructing Frescoes 

… but most walls are shattered into fragments 



Application 2: Reconstructing Frescoes 

… but most walls are shattered into fragments 



Application 2: Reconstructing Frescoes 

… and re-assembling the fragments is difficult 



Application 2: Reconstructing Frescoes 

… and re-assembling the fragments is difficult 



Application 2: Reconstructing Frescoes 

Our project: scan surfaces of fragments 

Surface  

image 

Fracture 

surface 



Application 2: Reconstructing Frescoes 

Our work: find matches between fragments 



Application 2: Reconstructing Frescoes 

Our work: reconstruct fresco from matches 

Candidate fragment matches 
Reconstructed Fresco 



Application 2: Reconstructing Frescoes 

It turns out that subtle patterns in surface images 

are good cues for finding matches 

 

Surface patterns on a fresco fragment 

(colors on right represent normal directions) 

Toler-Franklin et al. 



Application 2: Reconstructing Frescoes 

Brush strokes appear as periodic functions with 

dominant frequency and orientation 

 

Brush patterns on different fresco fragments 

(colors represent normal directions) 

Toler-Franklin et al. 



Application 2: Reconstructing Frescoes 

Brush strokes appear as periodic functions with 

dominant frequency and orientation 

 

f(x) F(u) Dominant frequency 

and direction 

Toler-Franklin et al. 



Application 2: Reconstructing Frescoes 

Consider alignment of brush strokes and other surface 

features when searching for matches 

Toler-Franklin et al. 



Image Analysis 

What other tools do we have for analyzing functions? 



Image Analysis 

What other tools do we have for analyzing functions? 

x 

f(x) 



Image Analysis 

What other tools do we have for analyzing functions? 

• Let’s look at gradients 

x 

f(x) 
f’(x) 



Image Gradients 

For 2D function f(x,y), the partial derivative is: 

 

 

 

For discrete data, we can approximate using finite differences: 
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Image Gradients 

The gradient of an image: 

 

  

The magnitude of the gradient:  

 

 

  
The direction of the gradient: 
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Computing Image Gradients 

This is a convolution with two simple filters: 
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Computing Image Gradients 

Other common gradient filters: 



Computing Image Gradients 

We usually limit high frequencies when computing 

gradient 

x 



Computing Image Gradients 

We usually limit high frequencies when computing 

gradient 

x 



Computing Image Gradients 

Useful fact #1: differentiation 

“commutes” with convolution 

 

 

 

Useful fact #2: Gaussian is 

separable: 
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Computing Image Gradients 

Thus, combine smoothing with gradient computation: 
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Computing Image Gradients 

Can use different sigma to find gradients at different 

“scales” 

1 pixel 3 pixels 7 pixels 



Gradient Analysis 

How are image gradients useful? 

 



Edges 

•An edge is a place of rapid change in the image 

intensity function 

image 

intensity function 

(along horizontal scanline) first derivative 

edges correspond to 

extrema of derivative 



Edges 

Silhouette 

Boundary 

Convex 

Crease 

Shadow  

Boundary 

Concave Crease 



Edges 
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Edges 
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Edge Detection 

Useful for many applications in vision 

• Segmentation 

• Camera pose estimation 

• 3D reconstruction 

• Object classification 

• Object recognition 

• etc. 

 

 



Canny Edge Detector 

1. Filter image with derivative of Gaussian  

2. Find magnitude and orientation of gradient 

3. Non-maximum suppression 

4. Hysteresis thresholding 



Canny Edge Detector 

Original Image Smoothed Gradient Magnitude 



Canny Edge Detector 

Nonmaximum suppression 

• Eliminate all but local maxima in gradient magnitude 

(sqrt of sum of squares of x and y components) 

• At each pixel p look along direction of gradient: 

if either neighbor is bigger, set p to zero 

• In practice, quantize direction to horizontal,  

vertical, and two diagonals 

• Result: “thinned edge image” 



Canny Edge Detector 

Smoothed gradient magnitude Non-maximum suppression 



Canny Edge Detector 

Final stage: thresholding 

Simplest: use a single threshold 

Better: use two thresholds 

• Find chains of touching edge pixels, all   

low 

• Each chain must contain at least one pixel   

high 

• Helps eliminate dropouts in chains, without being too 

susceptible to noise 

• “Thresholding with hysteresis” 



Canny Edge Detector 

Non-maximum suppression Canny edges 



Canny Edge Detector 

Original Image Canny edges 



Summary of Canny Edge Detector 

1. Filter image with derivative of Gaussian  

2. Find magnitude and orientation of gradient 

3. Non-maximum suppression: 

• Thin wide “ridges” down to single pixel width 

4. Hysteresis thresholding: 

• Define two thresholds: low and high 

• Use the high threshold to start edge curves and the low 

threshold to continue them 
 



Summary of Today 

Image analysis: 

• Frequency analysis 

• Fourier transform 

• Convolution 

• Gradient analysis 

• Edge detection 


