Motivation

Computer vision

Input: digital images Output: information about the world

Input is a regular array of discrete samples of a 2D continuous function representing color

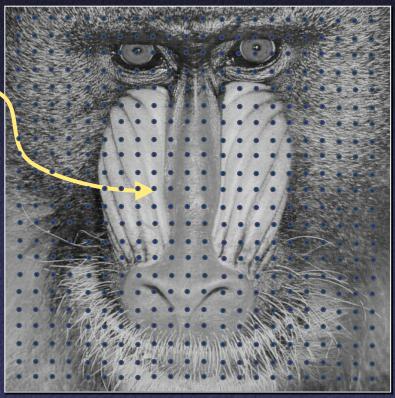
e.g., Color at (x,y)

Output is info about structure of image



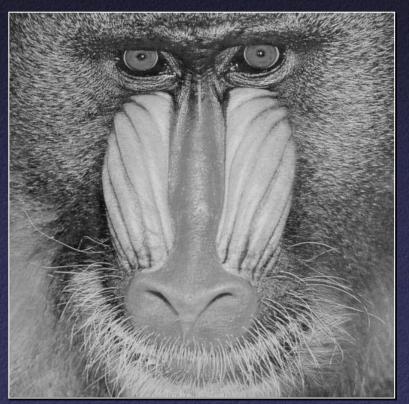
Color image

For now, let's consider only gray-level images



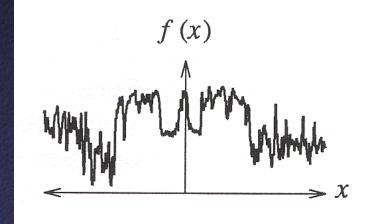
Gray-level image

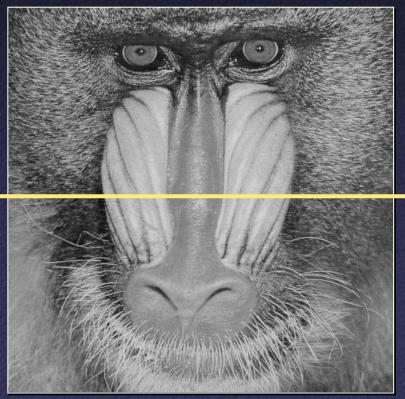
For now, let's ignore the discrete sampling



Gray-level function

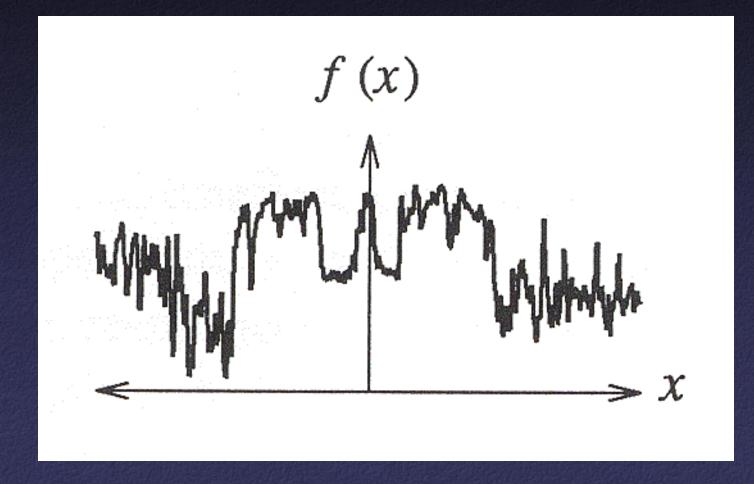
For now, let's consider only one horizontal scanline



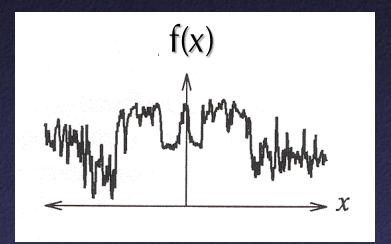


Gray-level function

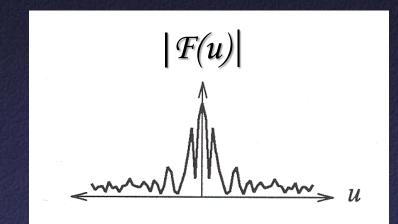
How do we analyze 1D continuous functions?



How do we analyze 1D continuous functions?One useful tool is frequency analysis

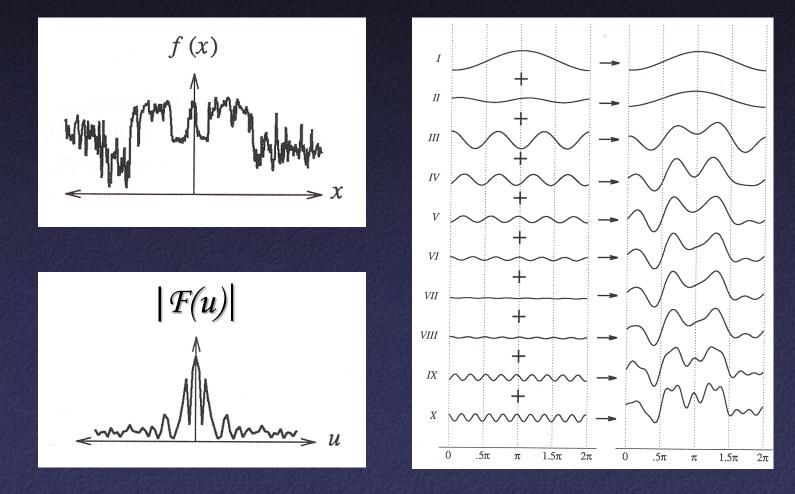


Spatial domain



Frequency domain

Any f(x) can be written as a sum of periodic functions



Fourier transform of function f is $\sum_{\infty}^{\infty} F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi x u} dx$

F(u) is a function of frequency u describing how much of each frequency f contains

Fourier transform has real and imaginary parts:

Magnitude:
$$|F| = \left[\Re(F)^2 + \Im(F)^2\right]^{1/2}$$

Phase: $\phi(F) = \tan^{-1} \frac{\Im(F)}{\Re(F)}$

Real part	How much of a cosine of that frequency you need
Imaginary part	How much of a sine of that frequency you need
Magnitude	Amplitude of combined cosine and sine
Phase	Relative proportions of sine and cosine

How does this work for 2D functions?

$$F(u,v) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(x,y) e^{-j2\pi u x} dx \right] e^{-j2\pi v y} dy.$$

$$f(x,y) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} F(u,v) e^{j2\pi u x} du \right] e^{j2\pi v y} dv.$$

The Fourier Transform is separable:

$$f(x,y) = f(x)g(y) \xrightarrow{\mathcal{F}} F(u,v) = F(u)G(v)$$

Proof:

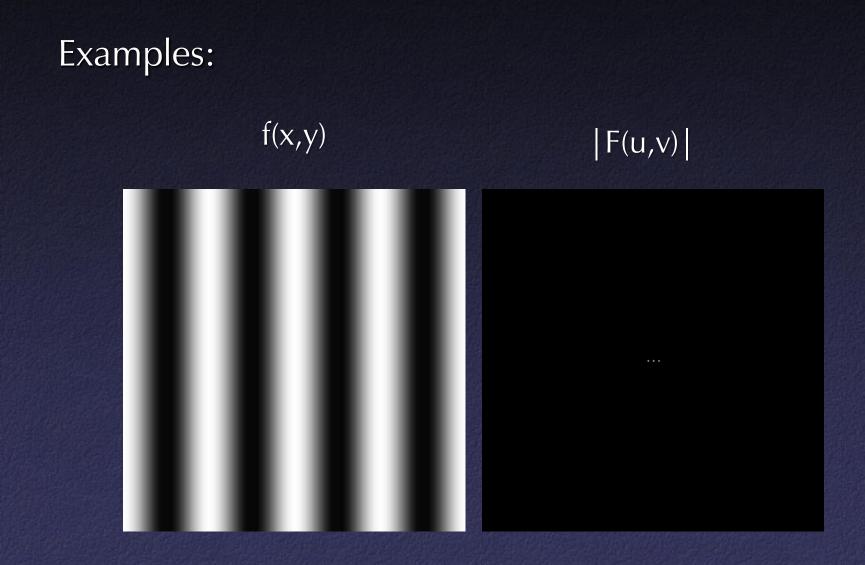
F(u,v)

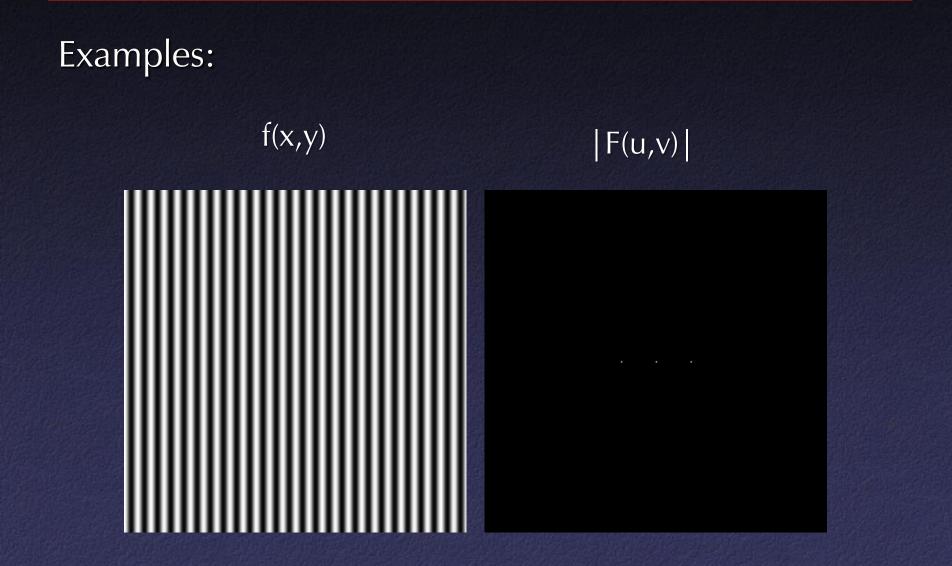
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx \, dy$$

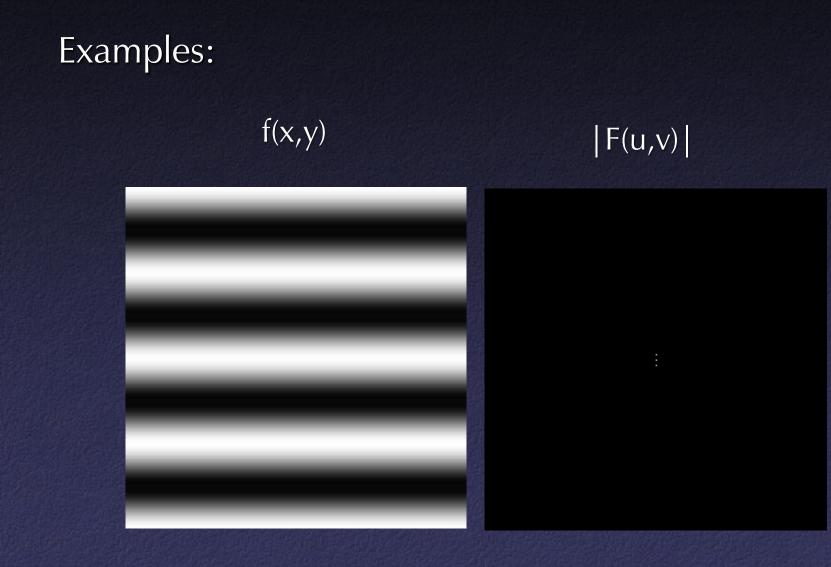
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y) e^{-j2\pi ux} e^{-j2\pi vy} \, dx \, dy$$

$$= \int_{-\infty}^{\infty} f(x) e^{-j2\pi ux} \, dx \int_{-\infty}^{\infty} g(y) e^{-j2\pi vy} \, dy$$

$$= F(u) G(v)$$



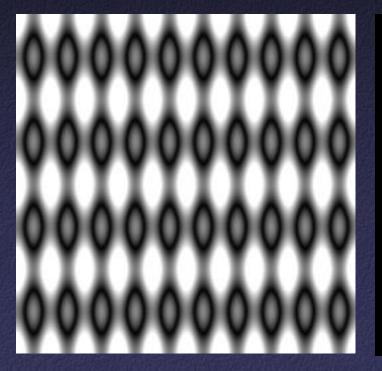




|F(u,v)|

Examples:

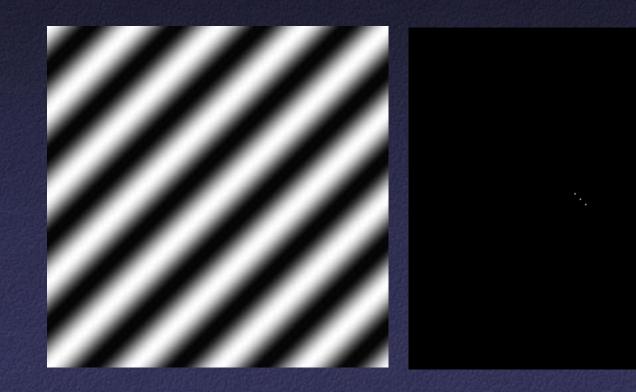
f(x,y)



|F(u,v)|

Examples:

f(x,y)

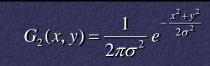


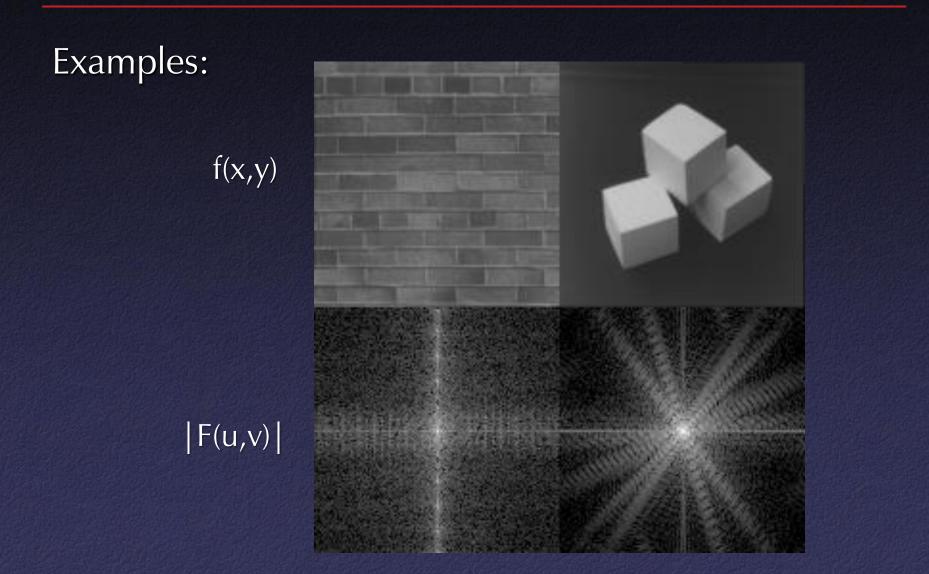
Examples: f(x,y)|F(u,v)|

Examples: Gaussian

f(x,y)

|F(u,v)|





Examples:

The Fourier transform has an inverse:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi xu} dx$$

 ∞ $f(x) = \int F(u)e^{+i2\pi ux}du$ $-\infty$

Application 1: Reducing Noise

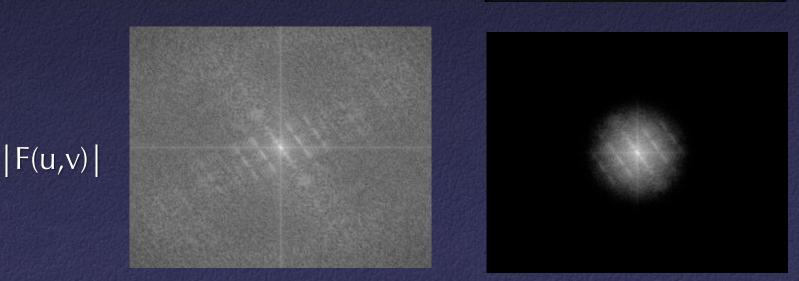
f(x,y)

|F(u,v)|

Noise is unwanted (random) energy in high frequencies

Application 1: Reducing Noise

f(x,y)



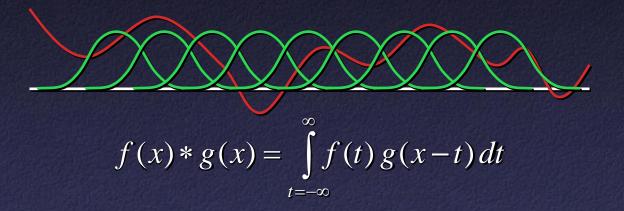
Original

BARAA

High frequencies removed

Application 1: Reducing Noise

Can reduce noise by convolving image with a Gaussian filter



Gaussian Filters

What is a Gaussian filter?

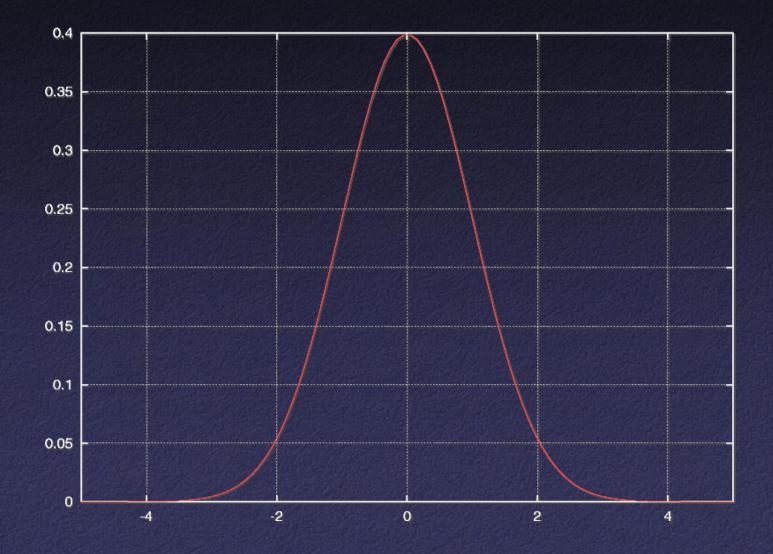
• One-dimensional Gaussian

$$G_1(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

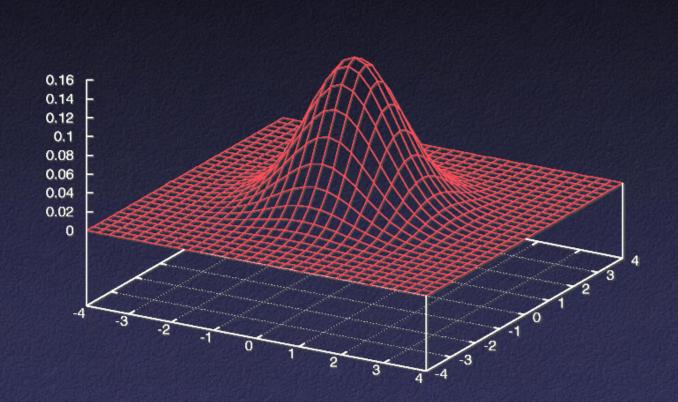
• Two-dimensional Gaussian

$$G_{2}(x, y) = \frac{1}{2\pi\sigma^{2}} e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

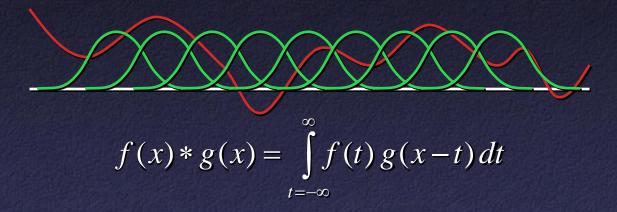
Gaussian Filters



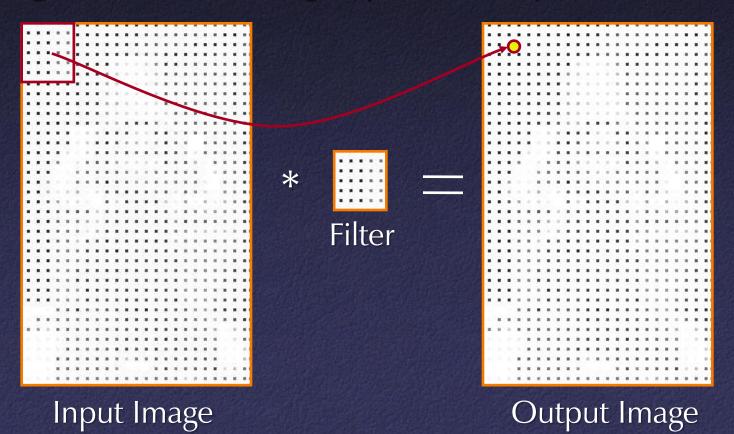
Gaussian Filters



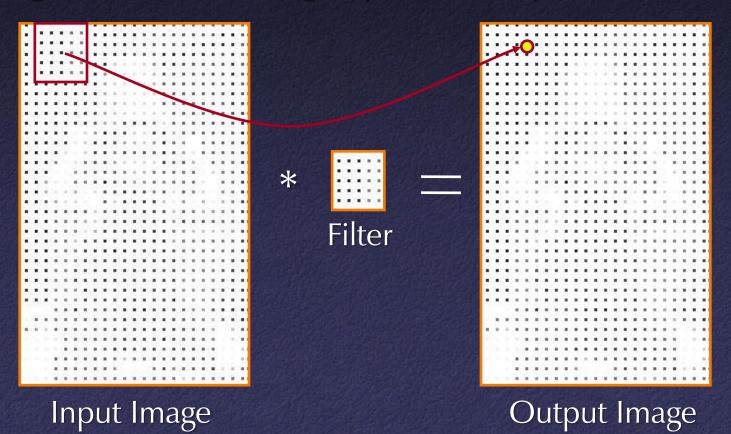
How do we convolve an image with a filter?



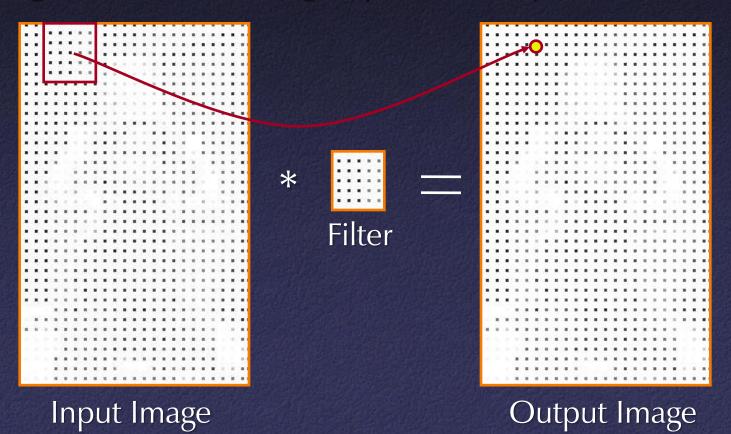
Discrete convolution



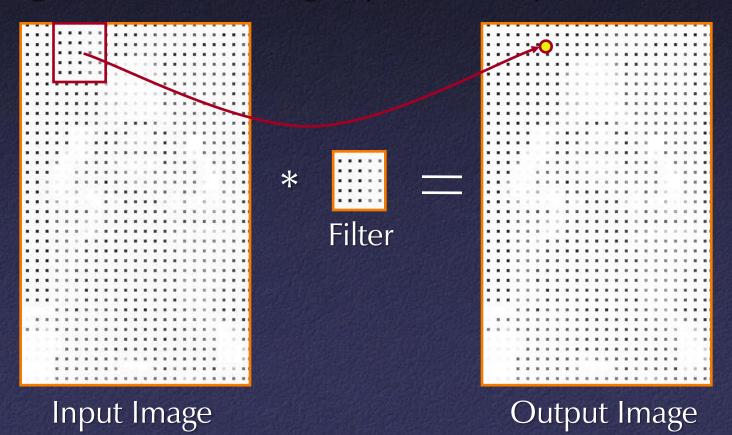
Discrete convolution



Discrete convolution

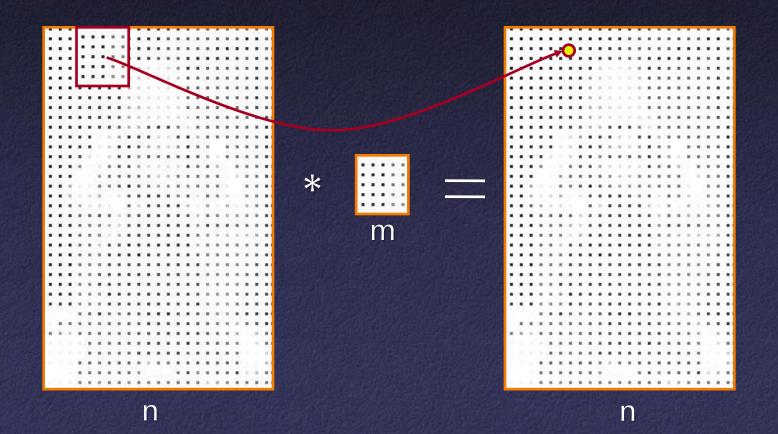


Discrete convolution



Discrete convolution

• Naïve process takes O(n²m²) ... OK for small filters (m)



Fourier Transform and Convolution

Useful fact: multiplication in frequency domain is same as convolution in spatial domain

$$f(x) * g(x) = \mathcal{F}^{-1}(\mathcal{F}(f(x)) \mathcal{F}(g(x)))$$

Fourier Transform and Convolution

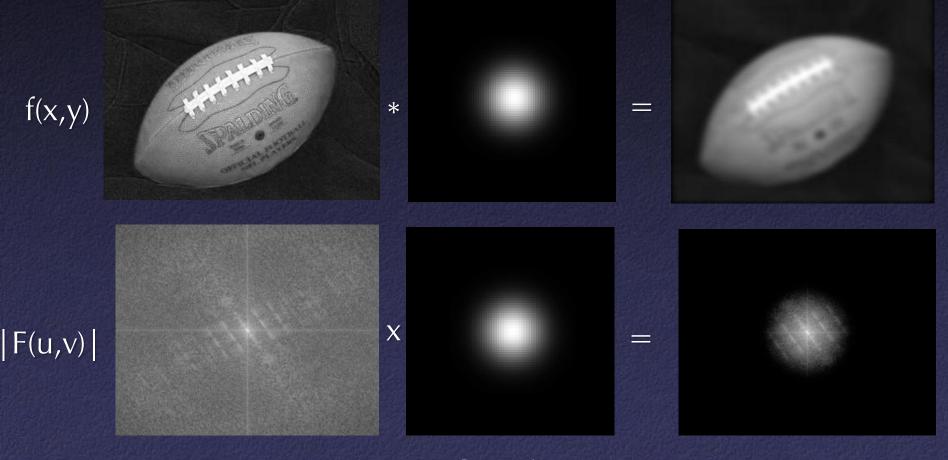
This provides a faster way to perform convolution for large filters:

• Fast Fourier Transform (FFT) takes time O(n log n)

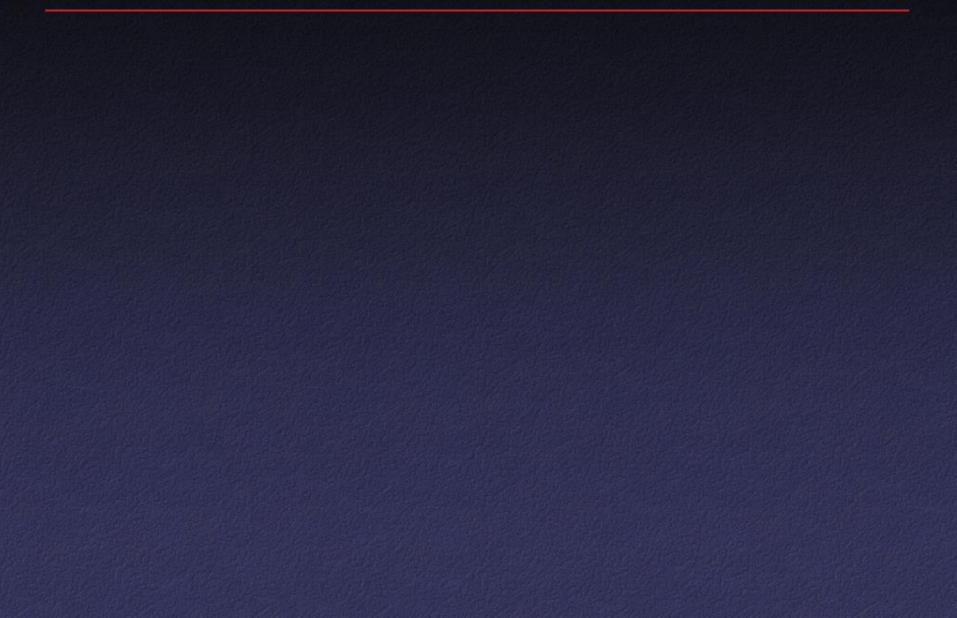
• Thus, convolution can be performed in time $O(n \log n + m \log m)$

Fourier Transform and Convolution

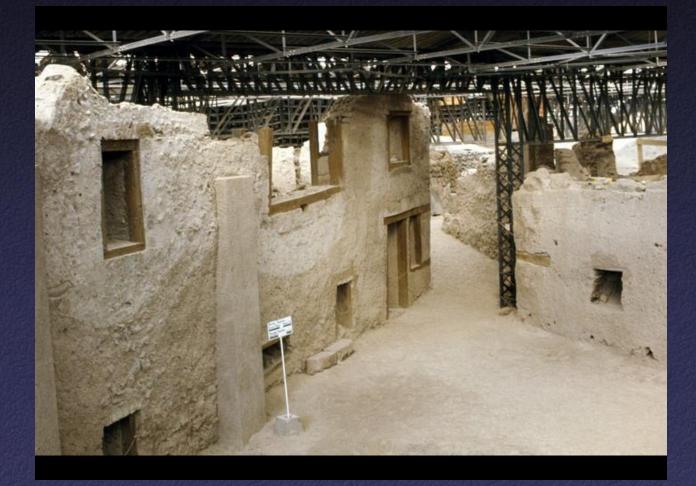
Also, helps us reason about effects of specific filters



Gaussian



Akrotiri = buried city discovered in 1967



Many walls were decorated with wall paintings

Many walls were decorated with wall paintings

... but most walls are shattered into fragments

... but most walls are shattered into fragments

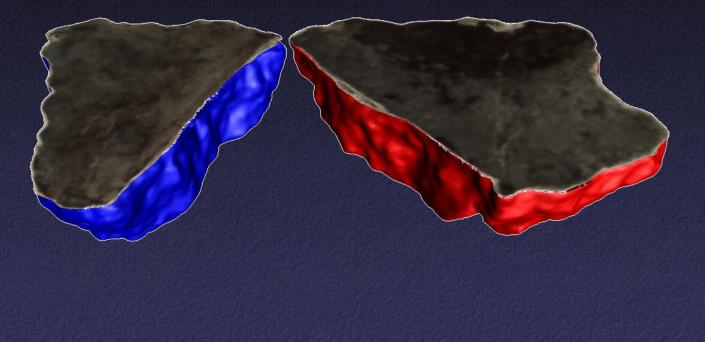
... and re-assembling the fragments is difficult

... and re-assembling the fragments is difficult

Our project: scan surfaces of fragments

Fracture surface

Our work: find matches between fragments



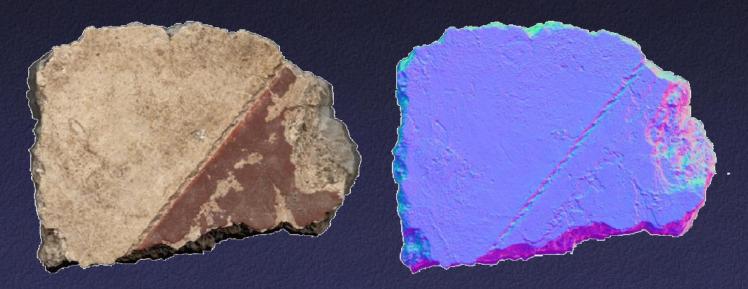
Our work: reconstruct fresco from matches



Candidate fragment matches

Reconstructed Fresco

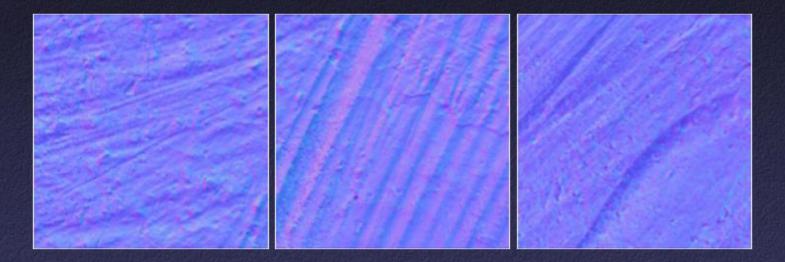
It turns out that subtle patterns in surface images are good cues for finding matches



Surface patterns on a fresco fragment (colors on right represent normal directions)

Toler-Franklin et al.

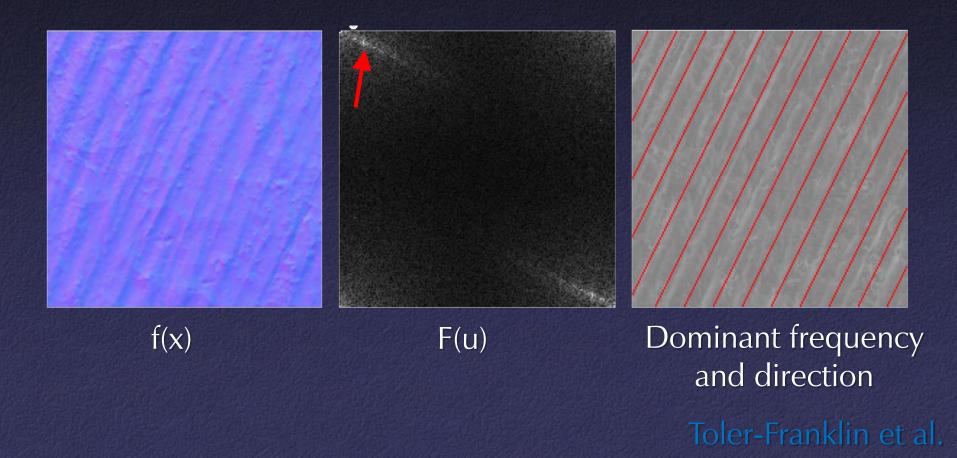
Brush strokes appear as periodic functions with dominant frequency and orientation



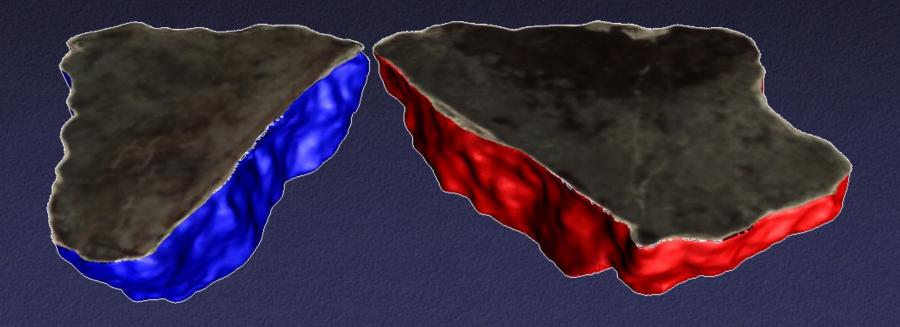
Brush patterns on different fresco fragments (colors represent normal directions)

Toler-Franklin et al.

Brush strokes appear as periodic functions with dominant frequency and orientation



Consider alignment of brush strokes and other surface features when searching for matches



Toler-Franklin et al.

Image Analysis

What other tools do we have for analyzing functions?

Image Analysis

What other tools do we have for analyzing functions?

f(x) MAMM X

Image Analysis

What other tools do we have for analyzing functions?Let's look at gradients

f(x)AAMAN Х

Image Gradients

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

Image Gradients

The gradient of an image:

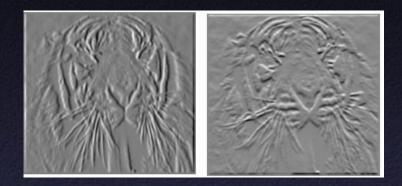
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The magnitude of the gradient:

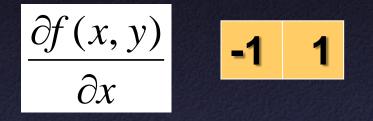
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The direction of the gradient:

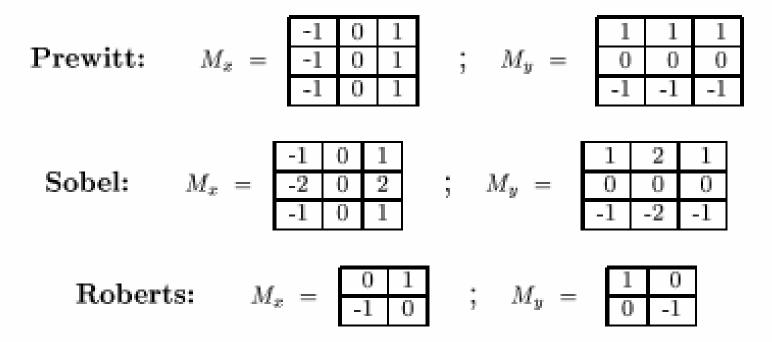
$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$



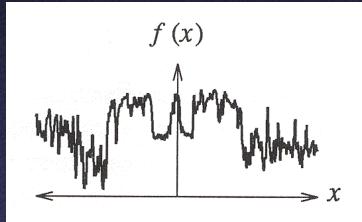
This is a convolution with two simple filters:



Other common gradient filters:



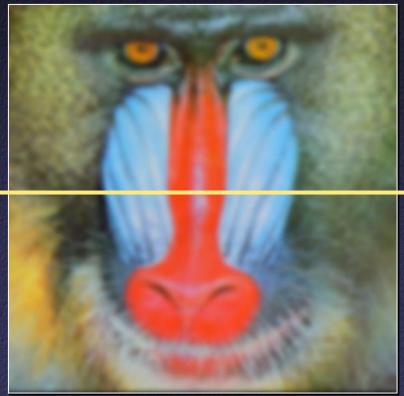
We usually limit high frequencies when computing gradient





We usually limit high frequencies when computing gradient

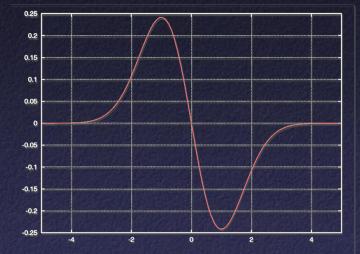




Useful fact #1: differentiation "commutes" with convolution

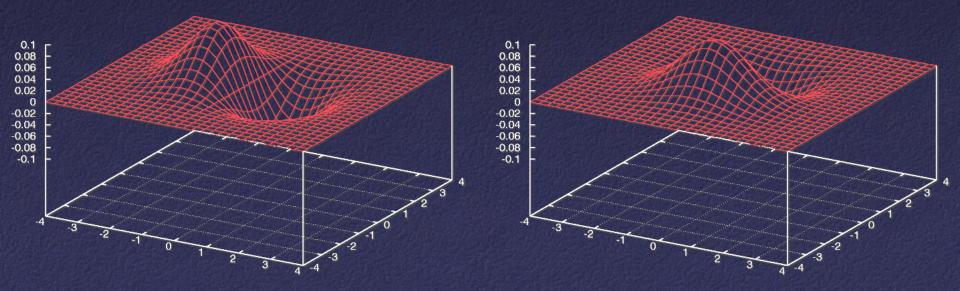
$$\frac{df}{dx} * g = \frac{d}{dx} (f * g) = f * \frac{dg}{dx}$$

Useful fact #2: Gaussian is separable:

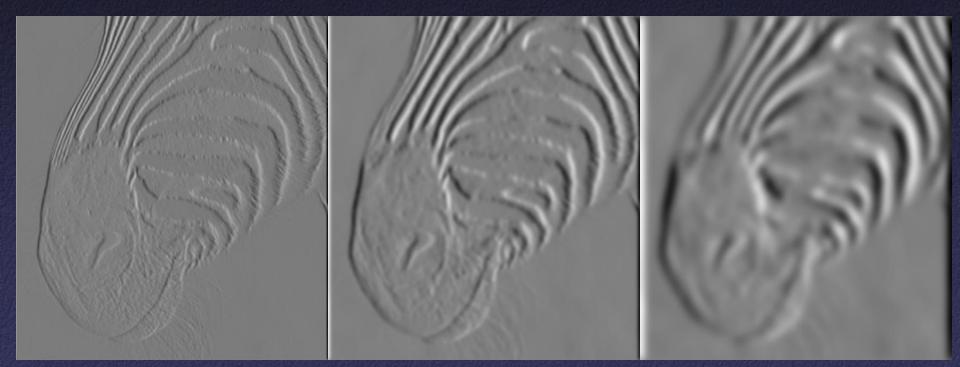


Thus, combine smoothing with gradient computation:

$$\nabla (f(x, y) * G_2(x, y)) = \begin{bmatrix} f(x, y) * (G_1'(x)G_1(y)) \\ f(x, y) * (G_1(x)G_1'(y)) \end{bmatrix} = \begin{bmatrix} f(x, y) * G_1'(x) * G_1(y) \\ f(x, y) * G_1(x) * G_1'(y) \end{bmatrix}$$



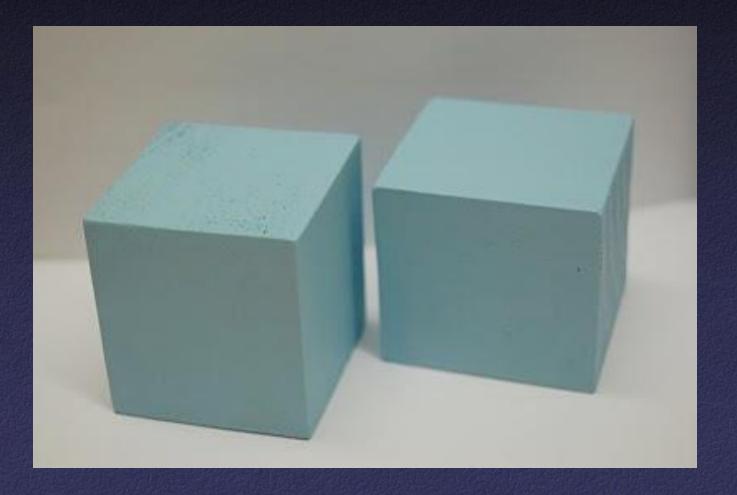
Can use different sigma to find gradients at different "scales"



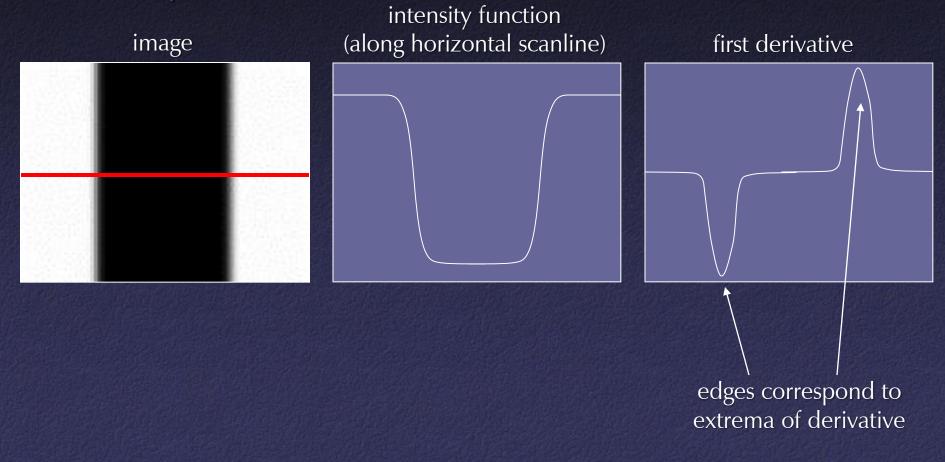
3 pixels

Gradient Analysis

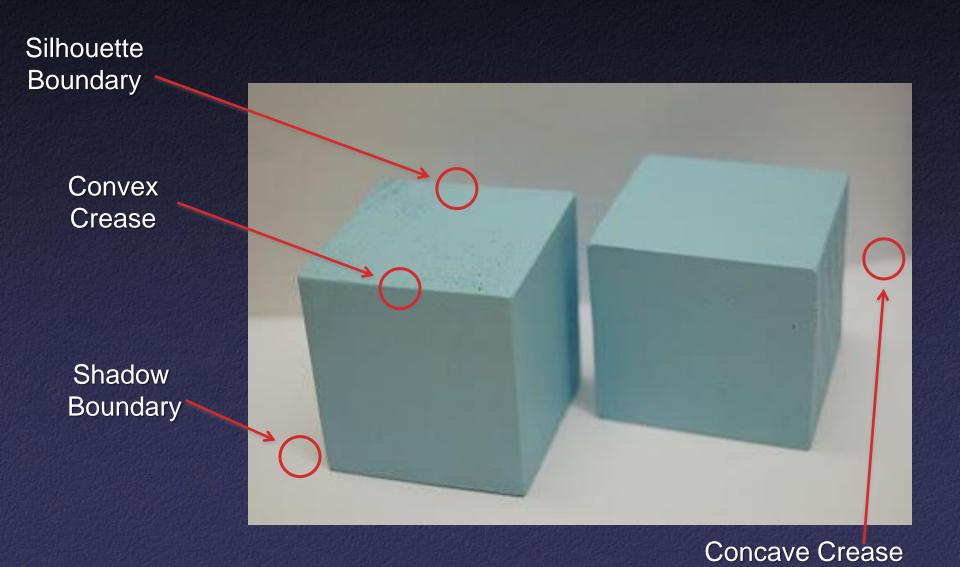
How are image gradients useful?

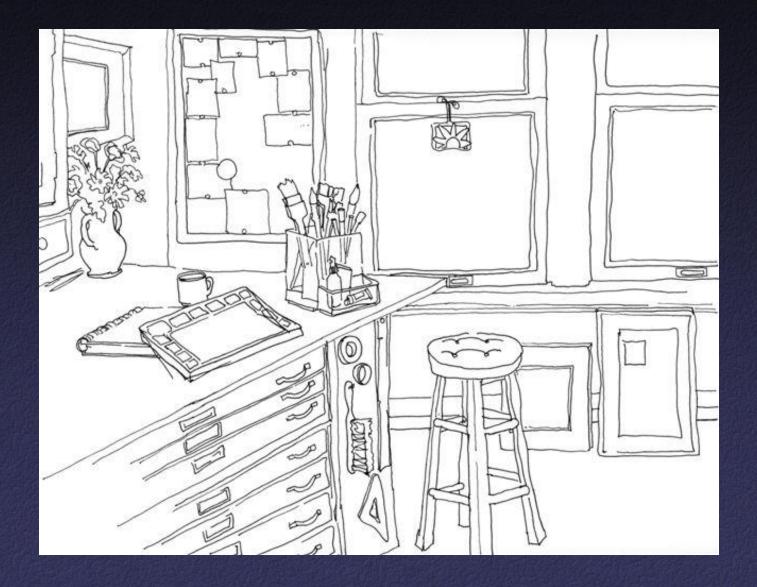


• An edge is a place of rapid change in the image intensity function

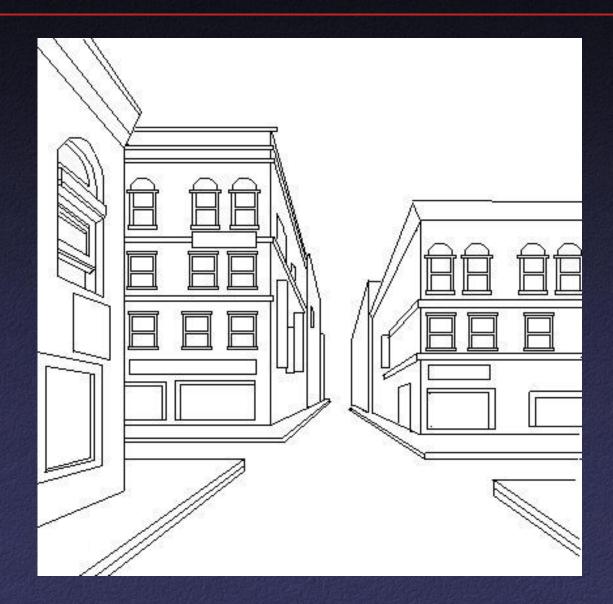


Edges





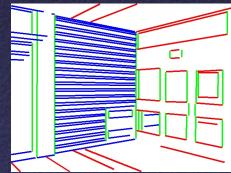
Edges



Edge Detection

Useful for many applications in vision

- Segmentation
- Camera pose estimation
- 3D reconstruction
- Object classification
- Object recognition
- etc.



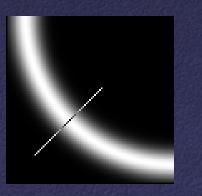
- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression
- 4. Hysteresis thresholding

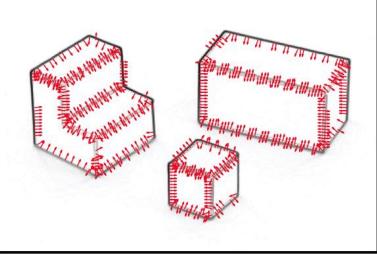
Original Image

Smoothed Gradient Magnitude

Nonmaximum suppression

- Eliminate all but local maxima in *gradient magnitude* (sqrt of sum of squares of x and y components)
- At each pixel p look along *direction* of gradient: if either neighbor is bigger, set p to zero
- In practice, quantize direction to horizontal, vertical, and two diagonals
- Result: "thinned edge image"





Smoothed gradient magnitude

Non-maximum suppression

Final stage: thresholding Simplest: use a single threshold Better: use two thresholds

- Find chains of touching edge pixels, all $\geq \tau_{low}$
- Each chain must contain at least one pixel $\geq \tau_{high}$
- Helps eliminate dropouts in chains, without being too susceptible to noise
- "Thresholding with hysteresis"

Non-maximum suppression

Canny edges

Original Image

Canny edges

Summary of Canny Edge Detector

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Hysteresis thresholding:
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Summary of Today

Image analysis:

- Frequency analysis
 - Fourier transform
 - Convolution
- Gradient analysis
 - Edge detection