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Digital “Signals” 

• 1D: functions of space or time (e.g., sound) 

• 2D: often functions of 2 spatial dimensions 
(e.g. images) 

• 3D: functions of 3 spatial dimensions 
(CAT, MRI scans) or 2 space, 1 time (video) 



Digital Signal Processing 

1. Understand analogues of filters 

2. Understand nature of sampling 



Filtering 

• Consider a noisy 1D signal f(t) 

• One basic operation: smooth the signal 
– Output = new function h(t) 

Filter 

f(t) h(t) 



Filtering 

• Consider a noisy 1D signal f(t) 

• One basic operation: smooth the signal 
– Output = new function h(t) 

• Linear Shift-Invariant Filters 
– If you double input, double output 

– If you shift input by ∆t, shift output by ∆t 



Simplest smoothing filter 

Filter 

Take average of nearby points: 



Convolution 

• Output signal at each point = weighted average of 
local region of input signal 
– Depends on input signal, pattern of weights 

– “Filter” g(x) = function containing weights for linear combination 

– Basic operation = move filter to some position x, 
add up f times g 
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Convolution 

∫
∞

∞−
−=∗ dttxgtfxgxf )()()()(

f(x) 
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Try for yourself: http://jhu.edu/~signals/convolve/ 



Convolution 

• f is called “signal” and g is “filter” or “kernel”, 
but the operation is symmetric  *(for real functions) 

• But: usually desirable to leave a constant signal 
unchanged: choose g such that 
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Filter Choices 

• Simple filters: box, triangle 



Gaussian Filter 

• Commonly used filter 
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2D Gaussian Filter 



Example: Smoothing 

Original image Smoothed with 
2D Gaussian kernel 



Example: Edge Detection 

Consider magnitude 
 of gradient 

(1st derivative) 



Smoothed Derivative 

• Derivative of noisy signal = more noisy 

• Solution: smooth with a Gaussian before taking 
derivative 

• Differentiation and convolution both linear operators: 
they “commute” 
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Smoothed Derivative 

• Result: good way of finding derivative = 
convolution with derivative of Gaussian 



Results in 1D: Peak appears at edge 



Smoothed Derivative in 2D 

• What is “derivative” in 2D?  Gradient: 

 

 

• Gaussian is separable! 

 

• Combine smoothing, differentiation: 
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Smoothed Derivative in 2D 
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Edge Detection using Derivative of Gaussian 

Original Image Smoothed Gradient Magnitude 



Canny Edge Detector 

• Smooth 

• Find derivative 

• Find maxima 

• Threshold 



Canny Edge Detector 

Original Image Edges 



Sampling 



Sampled Signals 

• Analog domain: Continuous signals 

• Digital domain: Can’t store continuous signal: 
instead store “samples” 
– Usually evenly sampled: 

f0=f(x0), f1=f(x0+∆x), f2=f(x0+2∆x), f3=f(x0+3∆x), … 

 

 

 
→ 



3 Hz sine wave 



3Hz sine sampled at 15Hz 



3Hz sine sampled at 15Hz 

 



5Hz sine sampled at 27 Hz 



5Hz sine sampled at 15Hz 



5Hz sine sampled at 6Hz 



5Hz sine sampled at 6Hz 

Aliasing! 



Aliasing 

• Need to sample at least twice per period to 
capture the signal unambiguously 

• Nyquist’s theorem: Highest allowed signal 
frequency is half the sampling frequency = 
Nyquist frequency 

• E.g., CD quality audio is 44,100 Hz 
– Highest frequency representable is 22,050 Hz 

– Limit of human hearing: ~17kHz to 20kHz 

 



Aliasing in 1D 

• Frequencies above Nyquist get “reflected” back 
below Nyquist 

 

 

 
0 fN 



Aliasing strikes! 





Preventing aliasing 

• Use a sample rate high enough to capture 
frequencies of interest (i.e., > twice the highest 
frequency of interest) 

• Apply a low-pass filter to remove frequencies 
above the Nyquist frequency, before sampling. 



Discrete Convolution 

• Integral becomes sum over samples 

 

 

• Normalization condition is 
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Computing Discrete Convolutions 

 

 

• If f has n samples and g has m nonzero samples, 
straightforward computation takes time 
       O(nm) 

• OK for small filter kernels, bad for large ones 
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for x = 1 to n 
 for i = 1 to m 
  out(x) = out(x) + f(i) * g(x-i) 

Does not 
handle 

boundaries! 



Fourier Analysis 



Frequency Domain 

• Any signal can be represented as a sum of 
sinusoids at discrete frequencies, each with a 
given magnitude and phase 







Frequency content in audio 

• Frequency related to pitch: 
– “A 440”: 440 Hz 

– 880Hz: one octave above 

• Frequency also related to timbre: 
– Real sounds contain many frequencies 

– Higher frequency content can make sounds 
“brighter” 

• In speech, higher frequencies are related to 
vowels, consonants (independent of 
spoken/sung pitch) 



Fourier Transform 

• Transform applied to function to analyze a signal’s frequency 
content 

• Several versions: 

Continuous Time Discrete Time 

Aperiodic / unbounded 
time, continuous 
frequency 

Fourier Transform Discrete-time Fourier 
Transform (DTFT) 

Periodic or bounded 
time, discrete frequency 

Fourier Series Discrete Fourier 
Transform (DFT) (FFT 
used here) 



Fourier Series 

• Periodic function f(x) 
defined over [–π .. π ] 
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Applying Euler’s Formula 

• Euler’s formula: 

 

• Apply: 
 
becomes 
 
where 
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Fourier Transform 

• [Continuous] Fourier transform: 

 

 

• Discrete Fourier transform: 

 

 

• F is a function of frequency – describes how much of 
each frequency f contains 

• Fourier transform is invertible 
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The Convolution Theorem 

• Fourier transform turns convolution 
into multiplication: 
 
  F (f(x) * g(x)) = F (f(x)) F (g(x)) 
 
(and vice versa): 
 
  F (f(x) g(x)) = F (f(x)) * F (g(x)) 



Fourier Transform and Convolution 

• Useful application #1: Use frequency space to 
understand effects of filters 
– Example: Fourier transform of a Gaussian 

is a Gaussian 

– Thus: attenuates high frequencies 
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Fourier Transform and Convolution 

 

• Box function? 

 

• In frequency space: 
sinc function 
– sinc(x) = sin(x) / x 

– Not as good at attenuating 
high frequencies 



Fourier Transform and Convolution 

• Fourier transform of derivative: 

 

 

• Blows up for high frequencies! 
– After Gaussian smoothing, doesn’t blow up 
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Fourier Transform and Convolution 

• Useful application #2: Efficient computation 
– Fast Fourier Transform (FFT) takes time 

      O(n log n) 

– Thus, convolution can be performed in time 
       O(n log n + m log m) 

– Greatest efficiency gains for large filters 
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