Ordinary Ditfferential Equations
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Ordinary Ditferential Equations (ODE:s)

* Differential equations are ubiquitous: the lingua
franca of the sciences. Many different fields are
linked by having similar differential equations
— electrical circuits
— Newtonian mechanics
— chemical reactions
— population dynamics

— economics... and so on, ad infinitum

* ODEs: 1 independent variable (PDEs have more)
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Example: RLC circuit

650 mH V=R]—I—L£+ij]dt
dt C

d2q+qu+ 1 V

dt* L dt chzf
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Example: Population Dynamics

* 1798 Malthusian
catastrophe

* 1838 Verhulst,
logistic growth

* Predator-prey systems,
Volterra-Lotka




Malthusian Population Dynamics
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Malthusian catastrophe

N=N,e"

Yikes! Population explosion!
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Verhulst: Logistic growth

N _
dt

N __ Ny
Ni-x) > N 1+ (e —1)
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Predator-Prey Population Dynamics
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Predator-Prey Population Dymanics

V .Volterra, commercial fishing in the Adriatic

X,= biomass of predators (sharks)

X, = biomass of prey (fish)



As Functions of Time

‘ ‘/\/\/ —

population

- W\ —predators

time




The x,-x, Plane

State-Space Diagram
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More Behaviors

Delay — limit cycle




Varieties of Behavior

e Stable focus
* Periodic

* Limit cycle



Varieties of Behavior

e Stable focus
* Periodic
* Limit cycle

* Chaos




Terminology

* Order: highest order of ( 0. dy(f)j d”y(t)

derivative determines dt’
order of ODE y'=F/m
* Explicit: Can express VO = Ftpyyr D)

k-th derivative in terms
y'=F/m
of lower orders

* Implicit: More general ~ f(£,y,.3",...,y"*) =0



Notational Conventions

* tis independent variable (scalar for ODEs)

* y is dependent variable

— may be vector-valued

* focus exclusively here on explicit, first-order
ODEs:

y' = f(t,y) where f : R"" —R"

* Special case: f does not depend explicitly on t:
autonomous ODE

y =/(y)



Transforming a higher-order ODE into a

system of first-order OD!
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For k-th order ODE

y Bty = ft,y, o, .. yF D)

define k new unknown functions

ur(t) = y(t), ua(t) = v'(t), ..., w(t) = y* (1)

Then original ODE is equivalent to first-order system

uq (1) u2(t)

us(1) us(t)
(1) k()
Cup(t) f(t,uy,us,..., u)




Newton’s second law as first-order system

y' = F/m

Defining u; = y and ug = ¢/ yields equivalent system of

two first-order ODEs
uy _ | w2
us F/m



Solving ODEs




What does it mean to solve an ODE?

* Analytically:
transform f(t, y, y’, y”’... yW)
into equation of formy = ...
dy

e.g., transform o= —2x> —12x> =20x + 8.5
X

intoy =—0.5x* +4x° —=10x" +8.5x+C
* Numerically:
use f(t, y, y’, y”... y¥) to compute
approximations of y for discrete values of t

— €.8/ (Y1r t1)/ (y,2/ tz)/ "'(an tn)



Analytically-derived solution

dy/dt > y



Numerically-derived Solution




ODEs have many solutions

Family of solutions for ODE ¢/ = y

initial value

\)y{}////




IVP vs BVP

* Today: Initial Value Problems

— Complete state known at t=t,

* As opposed to Boundary Value Problems

— Parts of state known at multiple values of t



ODEs and integration

* If y" = {(t, y) and y(t,) = y,, then

y(0) =y, + ] Fspe)ds

* This directly useful only if f is independent of y,
but helps us understand why there are so many
parallels to numerical integration



Numerical Methods for ODEs




Need for numerical methods

* Linear ODEs are nice:
a,(t) yW+...a,(t) y'+a,t) y = f(t)

n

* No analytical solutions for most nonlinear ODEs

* Can sometimes locally linearize non-linear
ODEs; e.g., pendulum equation

2
ﬁ + g sind =0
dr |
2
can be estimated as ddf + % 6d=0



Numerical methods for OD.
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* Can’t solve many (most) interesting problems
analytically

* Numerical methods find y, at a discrete set of t,
given f(y, t) and y,

* Important considerations:

— Accuracy / error analysis
— Efficiency: running time, number of steps

— Stability: will estimate of y(t,) diverge from true value?



“Simplest possible” method

e Known: dy

E:f(tay)

y=y,att=t,

* What is y, at time t,;=t, +

Vi =Yot+ StV

Euler’s method
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Forward (]

Huler’s method

Hxplicit) -

* Can repeat for subsequent estimates:

YVia = Vi +f(ti9yi)h

A
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Example

from Chapra & Canale

Solve % =2t —12¢* =20t +8.5

fort =1 given y =1 at ¢t =0, and for step size 0.5 :
Step 1:
y(0.5)=y(0)+ £(0,1)*0.5
where (0,1) = —2(0)° + 12(0)* -20(0)+8.5=8.5
so y(0.5)= 5.25

Step 2 :
y(1.0) = ¥(0.5) + £(0.5,5.25)*0.5
=5.25+[-2(0.5)° +12(0.5)> —20(0.5) +8.5]*0.5



Sequence of Fuler solutions




FError analysis of Fuler’s method

Derive y._, using Taylor series expansion around (t;, v;):
’ 2 (n-1) n
UGS )L e U L
2! n!

Euler’s method uses first two terms of this, so we have

Vi :yi_l_f(ti?yi)h_l_ +O(hn+1)

truncation error:

/ 2 (n—1) n
Et _ f (tiﬁyi)h + 4+ f (tiﬂyi)h + O(hn+l)
2! n!
E = O(h?)

This is local error.
Works perfectly if solution is linear: it’s a first-order method



Local and Global Error

Global error: difference between computed solution and
true solution y(¢) passing through initial point (#o, yo)

er = Yr — Y(tr)
Local error: error made in one step of numerical method
b = yr — up_1(t)

where uy_1(t) Is true solution passing through previous
point (tx_1,Yyr—1)



Local and Global error

== I

global error




Error analysis, in general

Local error: concerned with accuracy at each

step
— Euler’'s method: O(h?)

Global error: concerned with stability over

multiple steps
— Euler’s method: O(h)

In general, for nth-order method:
— Local error O(h"t1), global error O(h")

Stability is not guaranteed



Stability of OD.
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Solution of ODE is

@ Stable If solutions resulting from perturbations of initial
value remain close to original solution

@ Asymptotically stable if solutions resulting from
perturbations converge back to original solution

@ Unstable if solutions resulting from perturbations diverge
away from original solution without bound



Stable

Family of solutions for ODE ¢’ = 3

= 1



Asymptotically Stable

Family of solutions for ODE ¢/ = —y

Y

A




Stability of Method

* Possible to have instability (divergence from true
solution) even when solutions to ODE are stable

* Euler’s method sensitive to choice of h:
— Consider dy/dt = Ly
— Analytic solution is y(t) = y, e™
— Forward Euler step is y,.1 = v, — Ayh =y, (1 — Ah)
— Euler’s method unstable it h > 2/A

Other methods often have better stability.



Higher Order:
Runge-Kutta Methods




Taylor Series Methods

@ Euler's method can be derived from Taylor series
expansion

@ By retaining more terms in Taylor series, we can generate
higher-order single-step methods

@ For example, retaining one additional term in Taylor series

h? h3
y(t+h)=y(t)+hy'(t) + 5 y'(t) + o y"(t)+ -
gives second-order method
Fl%ﬂ f

Yk+1 = Yk + hi y}; + ? Y



Why not use TS methods?

* Requires higher-level derivatives of y
* Ugly and hard to compute!

* More efficient higher-order methods exist



Runge-Kutta

* Family of techniques

* Achieves accuracy of Taylor Series without
needing higher derivatives

* Accomplishes this by evaluating f several times
between t, and t,, ,



Runge-Kutta: General Form

Yinn = Vi +¢(ti9yi9h)h

where ¢ = ak, +a,k, +...+a k,
and

k= f(tiayi)

ky=f+ph,y +q,kh)

.k3 = f(t, + pyh,y + g, kih + g,k h)

k, =S, +p,hy +q, ,kh+q, kh+..+q,,,.k,_h)

n—1



Euler as R-K

° letn =1
Yin =Yt ¢(ti9yi9 h)h
where ¢ = ak,
and

kl = f(tiayi)

a, =1



Higher-Order RK

* Midpoint method * 4%-order Runge Kutta

a = l’l'f(y(k)) q= h-f(y(k))
b=h-f("™ +al2) b=h- (™ +al2)
y(k+1) _ y(k) +b+0(h3) o= h.f(y(k) +b/2)
d=h-f(y" +c)
Y =y 4 L(g+2b+2c+d)
+O0(h”)
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Usual Bag of Tricks: Extrapolation

* Richardson: compute for several values of h,
combine to cancel error: higher-order method

|/l

— As with integration, yields some “classica
algorithms: Euler + Richardson — Runge Kutta

* Burlisch-Stoer: fit function (polynomial or
rational) to approximation as a function of h;
extrapolate to h=0



Usual Bag of Tricks: Adaptive Solvers

* Change step size to get better accuracy when
function is changing quickly

Ir-




Usual Bag ot Tricks: Adaptive Solvers

* Change step size to get better accuracy when
function is changing quickly

* Determine appropriate step size by estimating
error

— Method 1: Halve the RK step size and compare
results: Error ~ vy, — v,

— Method 2: Compute RK predictions of different
order



Better Stability:
Implicit Methods




Need for Implicit Methods

* We saw that Euler’s method becomes unstable
with sufficiently small step size

— Same for RK, and all the methods we’ve seen

 Even for “nice” functions
—dy/dt =-hy — yt) =y,e™

* Can we avoid this by always using step sizes on
the order of “fastest-moving” component of
solution (i.e., t ~ 1/A)¢2 No!



Stift OD)]
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* May involve transients, rapidly oscillating
components: rates of change much smaller than
interval of study

Ll

, from Chapra & Canale



Another Stift ODE

@ Consider scalar ODE

y' = —100y + 100t + 101
with initial condition ¢(0) =1

@ General solution is y(t) = 1 4+t + ce~1%% and particular
solution satisfying initial condition is y(f) = 1 4 ¢
(i.e., ¢ =0)

@ Since solution is linear, Euler's method is theoretically
exact for this problem

@ However, to illustrate effect of using finite precision
arithmetic, let us perturb initial value slightly



@ With step size h = 0.1, first few steps for given initial values

dare
t 0.0 0.1 0.2 0.3 0.4

exactsol. 1.00 1.10 1.20 1.30 1.40

Eulersol. 0.99 1.19 0.39 8.59 —64.2
Eulersol. 1.01 1.01 2.01 —5.99 67.0

@ Computed solution is incredibly sensitive to initial value, as
each tiny perturbation results in wildly different solution

@ Any point deviating from desired particular solution, even
by only small amount, lies on different solution, for which
¢ # 0, and therefore rapid transient of general solution is
present

See http://www.cse.illinois.edu/iem/ode/stiff/



Backward (Implicit) Euler

Yia1t = i +f(ti+19yi+1)h

* Compare to Forward (Explicit) Euler:
Vin =Yt S (8,0)h
e Local error still O(h?)
* Stable for large step size! (Atleaston y=-1y)
* In general, requires nonlinear root finding

* Implicit and semi-implicit methods for higher orders



Predictor-Corrector Methods




Heun’s method

* Forward Euler: t
Assumes derivative at t.
is a good estimate
for whole interval < Ve y)h
>
tl 1:i+1

* Heun: want to average derivative at t;, t; ,

Ly )+ (. .y,
yi+1 :yi 4 f( l,yl) 2f‘( z+1,yz+1)h



Heun’s method

* To actually do this, predict y, 1, then
use slope at y;, ; to correct the prediction

* Predictor:

yi(fl) =i +f(ti9yi)h

* Corrector:

F,y)+ ft,, v
0

)
yi+1zyi+ h




Heun: An iterative method!

Can apply corrector once (so it’s a 2" order RK)

or iteratively (D)
(k) S y)+ W i )h
2

Corrector: .., =y, +

Joo_ 4,7
Yinn —Vin
J
yi+1
— guaranteed to converge to something, not necessarily O

Error estimate: |E|=

Error might not decrease monotonically, but
should decrease eventually for sufficiently small h



Heun: Example

d
Solve 2 = 4¢"% 0.5y
dt

fort=1given y =2 att =0, and for step size 1:

Step 1, Predict :
YO =y + f(t,, v,)h=2+4e"—0.5(2) =3

Step 2, Correct :

(0)
f(to,yo)Jrzf(tl,y1 )h:2+ 3+6.402164 (1) = 6.701082

Step 3, Correct again :

(1)
f(fo»yo);f(fvyl )h —6.275811

1) _
V"=t

(2) _
Vi =Yyt




Error of Heun’s method

* Local: O(h3)
* Global: O(h?) (i.e., it's a 2"d-order method)

Euler's method

Heun s met o



Relationship between Heun and Trapezoid

* when dy/dt depends only on t:

dyldt= f(t)
J v =" rid

Yinn = Vi = _‘;m f(t)dt

yi+1 ~ yi I f(ti) +2f(ti+1) (ti+1 _ti)
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