Monte Carlo Integration

COS 323

Integration in *d* Dimensions?

One option: nested 1-D integration

Evaluate the latter numerically, but each "sample" of g(y) is itself a 1-D integral, done numerically

Integration in d Dimensions?

- Midpoint rule in d dimensions?
 - In 1D: (b-a)/h points
 - In 2D: $(b-a)/h^2$ points
 - In general: $O(1/h^d)$ points
- Required # of points grows exponentially with dimension, for a fixed order of method
 - "Curse of dimensionality"
- Other problems, e.g. non-rectangular domains

Rethinking Integration in 1D

We Can Approximate...

Or We Can Average

Estimating the Average

$$\int_{0}^{1} f(x)dx \cong \frac{1}{N} \sum_{i=1}^{N} f(x_{i})$$

Other Domains

$$\int_{a}^{b} f(x)dx \cong \frac{b-a}{N} \sum_{i=1}^{N} f(x_{i})$$

"Monte Carlo" Integration

- No "exponential explosion" in required number of samples with increase in dimension
- (Some) resistance to badly-behaved functions

Le Grand Casino de Monte-Carlo

Variance

* with a correction of $\sqrt{\frac{N}{N-1}}$ (consult a statistician for details)

Variance decreases as 1/N Error of E decreases as 1/sqrt(N)

Variance

- Problem: variance decreases with 1/N
 - Increasing # samples removes noise slowly

Variance Reduction Techniques

- Problem: variance decreases with 1/N
 - Increasing # samples removes noise slowly

- Variance reduction:
 - Stratified sampling
 - Importance sampling

Stratified Sampling

Estimate subdomains separately

Can do this recursively!

Stratified Sampling

This is still unbiased

Stratified Sampling

 Less overall variance if less variance in subdomains

Total variance minimized when number of points in each subvolume M_i proportional to error in M_i .

Put more samples where f(x) is bigger

$$\int_{\Omega} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} Y_{i}$$

where
$$Y_i = \frac{f(x_i)}{p(x_i)}$$

and x_i drawn from P(x)

This is still unbiased

$$E[Y_i] = \int_{\Omega} Y(x) p(x) dx$$

$$= \int_{\Omega} \frac{f(x)}{p(x)} p(x) dx$$

$$= \int_{\Omega} f(x) dx$$
for all N

Variance depends on choice of p(x):

$$Var(E) = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{f(x_n)}{p(x_n)} \right)^2 - E^2$$

• Zero variance if $p(x) \sim f(x)$

$$p(x) = cf(x)$$

$$Y_i = \frac{f(x_i)}{p(x_i)} = \frac{1}{c}$$

$$Var(Y) = 0$$

Less variance with better importance sampling

Random number generation

True random numbers

http://www.random.org/

10101111 00101011 10111000 11110110 10101010 00110001 01100011 00010001 00000011 00000010 00111111 00010011 00000101 01001100 10000110 11100010 10010100 10000101 10000011 00000100 00111011 10111000 00110000 11001010 00000001 01001110 00011001 00111001

Generating Random Points

- Uniform distribution:
 - Use pseudorandom number generator

Pseudorandom Numbers

- Deterministic, but have statistical properties resembling true random numbers
- Common approach: each successive pseudorandom number is function of previous

Desirable properties

- Random pattern: Passes statistical tests (e.g., can use chi-squared)
- Long period: As long as possible without repeating
- Efficiency
- Repeatability: Produce same sequence if started with same initial conditions (for debugging!)
- Portability

Linear Congruential Methods

$$x_{n+1} = (ax_n + b) \bmod c$$

Choose constants carefully, e.g.

$$a = 1664525$$
 $b = 1013904223$
 $c = 2^{32}$

- Results in integer in [0, c)
- Simple, efficient, but often unsuitable for MC:
 e.g. exhibit serial correlations

Problem with LCGs

Lagged Fibonacci Generators

- Takes form $x_n = (x_{n-j} \ll x_{n-k})$ mod m, where operation \ll is addition, subtraction, or XOR
- Standard choices of (j, k): e.g., (7, 10), (5,17), (6,31), (24,55), (31, 63) with $m = 2^{32}$
- Proper initialization is important and hard
- Built-in correlation!
- Not totally understood in theory (need statistical tests to evaluate)

Seeds

• Why?

- Approaches:
 - Ask the user (for debugging)
 - Time of day
 - True random noise: from radio turned to static,
 or thermal noise in a resistor, or...

Seeds

Lava lamps!

FIG. 3

 http://www.google.com/patents/about/5732138_Method_for_seeding_a_pseud o_rand.html?id=ou0gAAAAEBAJ

Pseudorandom Numbers

- Most methods provide integers in range [0..c)
- To get floating-point numbers in [0..1),
 divide integer numbers by c
- To get integers in range [u..v], divide by c/(v-u+1), truncate, and add u
 - Better statistics than using modulo (v–u+1)
 - Only works if u and v small compared to c

Generating Random Points

- Uniform distribution:
 - Use pseudorandom number generator

- Specific probability distribution:
 - Function inversion
 - Rejection

- "Inversion method"
 - Integrate f(x): Cumulative Distribution Function

- "Inversion method"
 - Integrate f(x): Cumulative Distribution Function
 - Invert CDF, apply to uniform random variable

- Specific probability distribution:
 - Function inversion
 - Rejection

- "Rejection method"
 - Generate random (x,y) pairs,y between 0 and max(f(x))

Sampling from a non-uniform distribution

- "Rejection method"
 - Generate random (x,y) pairs,y between 0 and max(f(x))
 - Keep only samples where y < f(x)

Doesn't require cdf: Can use directly for importance sampling.

Example: Computing pi

With Stratified Sampling

Monte Carlo in Computer Graphics

or, Solving Integral Equations for Fun and Profit

or, Ugly Equations, Pretty Pictures

Computer Graphics Pipeline

Rendering Equation

Rendering Equation

$$L_o(x,\vec{\omega}') = L_e(x,\vec{\omega}') + \int_{\Omega} L_i(x,\vec{\omega}) f_r(x,\vec{\omega},\vec{\omega}') (\vec{\omega} \cdot \vec{n}) d\vec{\omega}$$

- This is an integral equation
- Hard to solve!
 - Can't solve this in closed form
 - Simulate complex phenomena

Rendering Equation

$$L_o(x,\vec{\omega}') = L_e(x,\vec{\omega}') + \int_{\Omega} L_i(x,\vec{\omega}) f_r(x,\vec{\omega},\vec{\omega}') (\vec{\omega} \cdot \vec{n}) d\vec{\omega}$$

- This is an integral equation
- Hard to solve!
 - Can't solve this in closed form
 - Simulate complex phenomena

Monte Carlo Integration

$$\int_{0}^{1} f(x) dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x_{i})$$

Estimate integral for each pixel by random sampling

Global Illumination

From Grzegorz Tanski, Wikipedia

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_P = \int_S L(x \to e) dA$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L(x, \vec{w}) = L_e(x, x \to e) + \int_S f_r(x, x' \to x, x \to e) L(x' \to x) V(x, x') G(x, x') dA$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Herf

$$L(x, \vec{w}) = L_e(x, x \to e) + \int_S f_r(x, x' \to x, x \to e) L(x' \to x) V(x, x') G(x, x') dA$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Debevec

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

Jensen

$$L_o(x,\vec{w}) = L_e(x,\vec{w}) + \int_{\Omega} f_r(x,\vec{w}',\vec{w}) L_i(x,\vec{w}') (\vec{w}' \bullet \vec{n}) d\vec{w}$$

Challenge

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - Partial occluders
 - Highlights
 - Caustics

Drettakis

$$L(x, \vec{w}) = L_e(x, x \to e) + \int_S f_r(x, x' \to x, x \to e) L(x' \to x) V(x, x') G(x, x') dA$$

Challenge

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - Partial occluders
 - Highlights
 - Caustics

Jensen

$$L(x, \vec{w}) = L_e(x, x \to e) + \int_S f_r(x, x' \to x, x \to e) L(x' \to x) V(x, x') G(x, x') dA$$

Big diffuse light source, 20 minutes

1000 paths/pixel

- Drawback: can be noisy unless *lots* of paths simulated
- 40 paths per pixel:

- Drawback: can be noisy unless *lots* of paths simulated
- 1200 paths per pixel:

Reducing Variance

- Observation: some paths more important (carry more energy) than others
 - For example, shiny surfaces reflect more light in the ideal "mirror" direction

Idea: put more samples where f(x) is bigger

Importance Sampling

Idea: put more samples where f(x) is bigger

$$\int_{0}^{1} f(x)dx = \frac{1}{N} \sum_{i=1}^{N} Y_{i}$$

$$Y_{i} = \frac{f(x_{i})}{p(x_{i})}$$

Effect of Importance Sampling

Less noise at a given number of samples

Uniform random sampling

Importance sampling

 Equivalently, need to simulate fewer paths for some desired limit of noise