Monte Carlo Integration
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Integration in 4 Dimensions?

* One option: nested 1-D integration
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Evaluate the latter numerically, but each “sample” of g(y)
is itself a 1-D integral, done numerically



Integration in 4 Dimensions?

* Midpoint rule in d dimensions?
— In 1D: (b-a)/h points
— In 2D: (b-a)/h? points
— In general: O(1/h9) points

* Required # of points grows exponentially with
dimension, for a fixed order of method

— “Curse of dimensionality”

* Other problems, e.g. non-rectangular domains



Rethinking Integration in 1D
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We Can Approximate...
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Or We Can Average

| f(0)dx = E(f(x))
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Estimating the Average
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Other Domains
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“Monte Carlo” Integration

* No “exponential explosion”
in required number of samples
with increase in dimension

* (Some) resistance to
badly-behaved functions

Le Grand Casino de Monte-Carlo



Variance

i f(x)dx = b=

* with a correction of /<5
(consult a statistician for details)

Variance decreases as 1/N
Error of E decreases as 1/sqrt(N)



Variance

* Problem: variance decreases with 1/N

— Increasing # samples removes noise slowly

E(f(x))




Variance Reduction Techniques

* Problem: variance decreases with 1/N

— Increasing # samples removes noise slowly

e Variance reduction:
— Stratified sampling

— Importance sampling



Stratified Sampling

* Estimate subdomains separately

E(f(x) —I l R
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Can do this recursively!




Stratified Sampling

e This is still unbiased
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Stratified Sampling

* | ess overall variance if less variance
in subdomains
k

Var[E :Z j Var f (x)]‘

Jj=1 J'

£ (f(x))

Total variance minimized when
number of points in each
subvolume M, proportional to
error in M.




Importance Sampling

* Put more samples where f(x) is bigger

J fxya - —ZY
E(f(x))
where Y, = f(x )
p(xi)

and x, drawn from P(x)



Importance Sampling

e This is still unbiased

E[Y,]= [ Y(x) p(x)dx

E(f(x))

for all N



Importance Sampling

* Variance depends on
choice of p(x):

E(f(x))
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Importance Sampling

* Zero variance if p(x) ~ f(x)

p(x) =cf (x)
. 1
E(f(x) ¥, = ;jg; - -
Var(Y) =0

Less variance with better
importance sampling



Random number generation




True random numbers

* hitp://www.random.org/

10101111 00101011 10111000 11110110 10701070 00110001 01100011 00010001
00000011 00000010 00111111 00010011 00000101 01001100 10000110 11100010
100107100 10000101 10000011 00000100 00111011 101117000 00110000 11001010
11011101 11101111 00100010 10701011 00100110 10101111 00001011 10110100
00011100 00001111 11001001 11001100 01111101 10000100 10111000 01101011
01101011 01111101 11001010 11101110 111011170 00700010 10110700 010071000
11010111 11011011 11100700 01070010 10111101 01011010 01001110 01110000
00100010 11000111 01070000 10110011 01001011 00110001 01011100 10001111
11111000 10101011 01011011 01070000 01101111 00011001 00000011 00110000
10000001 00000110 11010011 00011110 111011017 00000011 00100110 01070011
11070111 10010001 10000111 01070010 01101070 00100101 10011111 01000111
10701001 01100001 01010011 01001000 110101170 01111110 11010011 01110110
00000001 01001110 00011001 00111001


http://www.random.org/

Generating Random Points

* Uniform distribution:

— Use pseudorandom number generator

A

Probability




Pseudorandom Numbers

* Deterministic, but have statistical properties
resembling true random numbers

* Common approach: each successive
pseudorandom number is function of previous



Desirable properties

Random pattern: Passes statistical tests
(e.g., can use chi-squared)

Long period: As long as possible without repeating
Efficiency

Repeatability: Produce same sequence if started
with same initial conditions (for debugging!)

Portability



Linear Congruential Methods

X, = (axn +b) mod ¢

n+l

* Choose constants carefully, e.g.

a= 1664525
b=1013904223
c = 232

* Results in integer in [0, ¢)

* Simple, efficient, but often unsuitable for MC:
e.g. exhibit serial correlations



Problem with 1.CGs

n = 19683,

0.25

0.5

Mo higher resolution available.



Lagged Fibonacci Generators

* Takes form x,, = (x,; « X, ;) mod m, where

operation « is addition, subtraction, or XOR

e Standard choices of (j, k): e.g., (7, 10), (5,17),
(6,31), (24,55), (31, 63) with m = 232

* Proper initialization is important and hard

* Built-in correlation!

* Not totally understood in theory (need statistical
tests to evaluate)



Seeds

* Why?

* Approaches:
— Ask the user (for debugging)
— Time of day

— True random noise: from radio turned to static,
or thermal noise in a resistor, or...



Seeds

Lava lamps!
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FIG. 3

http://www.google.com/patents/about/5732138 Method for_seeding a pseud
o_rand.html?id=ouOgAAAAEBA)



Pseudorandom Numbers

* Most methods provide integers in range [0..c)

* To get floating-point numbers in [0..1),
divide integer numbers by c

* To get integers in range [u..v], divide by
c/(v—u+1), truncate, and add u
— Better statistics than using modulo (v—u+1)

— Only works if u and v small compared to c



Generating Random Points

* Uniform distribution:

— Use pseudorandom number generator

A

Probability




Sampling from a non-uniform distribution

* Specific probability distribution:

— Function inversion

— Rejection

J(x)




Sampling from a non-uniform distribution

* “Inversion method”

— Integrate f(x): Cumulative Distribution Function

£(x) J £




Sampling from a non-uniform distribution

* “Inversion method”
— Integrate f(x): Cumulative Distribution Function

— Invert CDF, apply to uniform random variable

£(x) J £

L




Sampling from a non-uniform distribution

* Specific probability distribution:

— Function inversion

— Rejection

J(x)




Sampling from a non-uniform distribution

* “Rejection method”

— Generate random (x,y) pairs,
y between 0 and max(f(x))




Sampling from a non-uniform distribution

* “Rejection method”

— Generate random (x,y) pairs,
y between 0 and max(f(x))

— Keep only samples where y < f(x)

|
Doesn't require cdf: Can use directly for importance sampling.



Example: Computing p1




With Stratitied Sampling




Monte Carlo in Computer Graphics




ot, Solving Integral Equations
for Fun and Profit




or, Ugly Equations, Pretty Pictures




Computer Graphics Pipeline
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Modeling Animation Rendering

Lighting
and
Reflectance




Rendering Equation

L (x,@") :Le(x,ca')+jLi(x,a‘))]g(x,a‘),a3')(a‘)-ﬁ)d@

Q
: Surface
nght ' ‘ .
Viewer
da. ‘1

“e

[Kajiya 1986]




Rendering Equation

L (x,@") :Le(x,@')+le.(x,a‘))fr(x,a‘),a‘)')(a‘)-ﬁ)dc?)
Q

* This is an integral equation

 Hard to solve!

— Can’t solve this
in closed form

— Simulate complex
phenomena

Heinrich



Rendering Equation
g g

L (x,@") :Le(x,ca')+jLi(x,a3)ﬁ(x,a3,a3')(a‘)-ﬁ)d@
Q

* This is an integral equation

 Hard to solve!

— Can’t solve this
in closed form

— Simulate complex
phenomena

Jensen



Monte Carlo Integration

f(x)

Shirley



Monte Carlo Path Tracing

Estimate integral
for each pixel
by random sampling




Global Illumination
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From Grzegorz Tanski, Wikipedia



Monte Carlo Global Illumination

* Rendering = integration
— Antialiasing
— Soft shadows
— Indirect illumination

— Caustics



Monte Carlo Global Illumination

* Rendering = integration
— Antialiasing
— Soft shadows
— Indirect illumination

— Caustics

\\\X\

Surface

L,= jL(x — e)dA
S



Monte Carlo Global Illumination

* Rendering = integration Light
— Antialiasing Eye
)

— Soft shadows
— Indirect illumination

— Caustics

Surface

L(xw)=L,(x,x—>e)+ j f.(x x> x,x > e)L(x"—> x)V(x,x")G(x,x")dA



Monte Carlo Global Illumination

* Rendering = integration
— Antialiasing
— Soft shadows
— Indirect illumination

— Caustics

Herf

L(xw)=L,(x,x—>e)+ _‘- f(xx > x,x > e)L(x'—> x)V(x,x)G(x,x")dA



Monte Carlo Global Illumination

* Rendering = integration Surface
— Antialiasing Light
— Soft shadows Eye. .
— Indirect illumination ,
()} ()]
— Caustics
Surface

L (x;w) =L (x,0)+ j £ (e, W)L (x, ' )(7' ® 1)
Q



Monte Carlo Global Illumination

* Rendering = integration
— Antialiasing
— Soft shadows
— Indirect illumination

— Caustics

L (x;w) =L (x,0)+ j £ (e, W)L (x, ' )(7' ® 1)
Q



Monte Carlo Global Illumination

. . , Specular
* Rendering = integration Surface Light
— Antialiasing
— Soft shadows

— Indirect illumination

— Caustics

Diffuse Surface
L (x,w) =L (x,w)+ j £.Cei, W)L (x, W)W @ 77)dw
Q



Monte Carlo Global Illumination

* Rendering = integration
— Antialiasing
— Soft shadows
— Indirect illumination

— Caustics

L (x;w) =L (x,)+ j £ e, W)L (x, W)W @ 77)dw
Q



Challenge

* Rendering integrals are difficult to evaluate
— Multiple dimensions

— Discontinuities

e Partial occluders
* Highlights

e Caustics

Drettakis

L(xw)=L,(x,x—e)+ J- f(xx > x,x > e)L(x'—> x)V(x,x)G(x,x")dA



Challenge

* Rendering integrals are difficult to evaluate
— Multiple dimensions

— Discontinuities

e Partial occluders
* Highlights

e Caustics

Jensen

L(xw)=L,(x,x—>e)+ _‘- f(xx > x,x > e)L(x'—> x)V(x,x)G(x,x")dA



Monte Carlo Path Tracing

Big diffuse light source, 20 minutes




Monte Carlo Path Tracing

1000 paths/pixel

Jensen



Monte Carlo Path Tracing

* Drawback: can be
noisy unless lots of
paths simulated

* 40 paths per pixel:

Lawrence



Monte Carlo Path Tracing

* Drawback: can be
noisy unless lots of
paths simulated

* 1200 paths per pixel:

Lawrence



Reducing Variance

* Observation: some paths more important
(carry more energy) than others

— For example, shiny surfaces reflect more light
in the ideal “mirror” direction

* ldea: put more samples where f(x) is bigger



Importance Sampling

* Idea: put more samples where f(x) is bigger

1 1 N
! f(x)dx = WZ
y = /G0

p(x;)




Ettect of Importance Sampling

* Less noise at a given number of samples

F" :

Uniform random sampling Importance sampling

* Equivalently, need to simulate fewer paths for
some desired limit of noise
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