Part 1: PCA & MDS
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lL.ast Time

How do we solve least-squares...

— without incurring condition-squaring effect of normal equations
(ATAX = ATb)

— when A is singular, “fat”, or otherwise poorly-specified?

QR Factorization

— Householder method
Singular Value Decomposition

Total least squares



Dimensionality Reduction

* Map points in high-dimensional space to
lower number of dimensions

* Preserve structure: pairwise distances, etc.

* Useful for further processing:
— Less computation, fewer parameters

— Easier to understand, visualize



SVD for rank-£ approximation

A is mXn matrix of rank > k

Suppose you want to find best rank-k
approximation to A

Take SVD: A = UWV!

Set all but the largest k singular values of W to O

Can form compact representation by eliminating
columns of U and V corresponding to zeroed w;



Principal Components Analysis (PCA)

* Approximating a high-dimensional data set
with a lower-dimensional linear subspace

* Also converts possibly-correlated attributes into

uncorrelated attributes
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SVD and PCA

Data matrix with points/examples as rows
Center data by subtracting mean (“whitening”)
Compute SVD

Columns of V, are principal components

Value of w; gives importance of each
component



PCA on Faces: “Eigentfaces”

First principal component
Average

face \

Other
components

For all except average,
//gray” — O,

“white” > 0,

“black” < 0




Uses of PCA

* Compression: each new image can be
approximated by projection onto first few
principal components

* Recognition: for a new image, project onto first
few principal components, match feature vectors

* Generation: Adjust contributions of a few

principal components to generate new plausible
data points



PCA for Relighting

* Images under different illumination
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PCA for Relighting

* Images under different illumination

* Most variation captured
by first 5 principal
components — can
re-illuminate by
combining only
a few images




PCA for DNA Microarrays

* Measure gene activation under different conditions
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PCA for DNA Microarrays

* Measure gene activation under different conditions

Extracting Data

Experiments —»
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PCA for DNA Microarrays

* PCA shows patterns of correlated activation

— Genes with same pattern might have similar function

relative variance
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PCA for DNA Microarrays

* PCA shows patterns of correlated activation

— Genes with same pattern might have similar function

projection on 2

projection on 1
[Wall et al.]



Music Map

» amhbient = blues ) i 1ni folk jazz C i pop & rap =




Practical Considerations for PCA

e Sensitive to scale of each attribute (column)

— In practice, may scale each attribute to have unit

variance

* Sensitive to noisy attributes

— Just because a dimension is highly weighted by PCA
doesn’t mean it’s relevant, informative, etc.
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Multidimensional Scaling




Multidimensional Scaling

* In some experiments, can only measure
similarity or dissimilarity
— e.g., is response to stimuli similar or different?
— Frequent in psychophysical experiments,
preference surveys, etc.
* Want to recover absolute positions in
k-dimensional space



Multidimensional Scaling

* Example: given pairwise distances between cities

Atl Chi Den |[Hou |LA Mia |[NYC |SF Sea |DC
Atlanta 0
Chicago 587 0
Denver 1212| 920 0
Houston 701 940| 879 0
LA 1936| 1745 831| 1374 0
Miami 604| 1188| 1726 968( 2339 0
NYC 748 713| 1631| 1420| 2451| 1092 0
SF 2139| 1858 949| 1645| 347| 2594 2571 0
Seattle 2182 1737 1021] 1891 959| 2734 2406| 678 0
DC 543 597| 1494 1220 2300 923| 205| 2442| 2329 0
— Want to recover locations




Euclidean MDS

* Formally, let’s say we have n x n matrix D
consisting of squared distances d;; = (x;— x;)*

* Want to recover n x k matrix X of positions
in k-dimensional space

0 (xl o x2)2 ('xl o x3)2
(x, — x2)2 0 (x, — x3)2

(x—x)" (x5, —x;)° 0




Euclidean MDS

* Observe that

2 2 2 2
dl.j —(xl.—xj) = X, —2xl.x].+xj

* Strategy: convert matrix D of d;* into

matrix B of xx;

— “Centered” distance matrix
— B =XXT



Euclidean MDS

* Centering:

— Sum of row i of D = sum of columniof D =

S, —Zd Zx2—2xx +x]2.
= nx; —ZXZ)C +Zx

— Sum of all entries in D =

2
s = ZSZ. = 2112)@2 —2(2)@)



Euclidean MDS

* Choose Zx. = 0
— Solution will have average position at origin
2 2 2
S, = nXx, +ij, S=2anj
— Then, ’ ’

* 50, to get B:
— compute row (or column) sums
— compute sum of sums
— apply above formula to each entry of D
— Divide by -2



Factoring B = XX using SVD

* Now have B, want to factor into XX'
* If Xisn x k, B must have rank k

* Take SVD, set all but top k singular values to 0
— Eliminate corresponding columns of U and V
— Have B'=U'WV'!
— B’ is square and symmetric, so U" = V’

— Take X = U’ times square root of W’



Multidimensional Scaling

e Result (k = 2):
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Another application
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Figuw.- 2 (a) RMDS of children's similarity judgments about 15 body parts: (b) RMDS of adults'
simlarity judgements aboul 15 body parts.

From Young 1985 / Jacobowitz 1973



Perceptual Mapping tor Marketing
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Multidimensional Scaling

* Caveat: actual axes, center not necessarily
what you want (can’t recover them!)

* This is “classical” or “Euclidean” MDS

— Distance matrix assumed to be actual Euclidean distance

* More sophisticated versions available

— “Non-metric MDS”: not Euclidean distance,
sometimes just inequalities

— Replicated MDS: for multiple data sources (e.g. people)
— “Weighted MDS": account for observer bias
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