
QR Factorization and
Singular Value Decomposition

COS 323

Why Yet Another Method?

• How do we solve least-squares…
– without incurring condition-squaring effect of normal equations

(ATAx = ATb)

– when A is singular, “fat”, or otherwise poorly-specified?

• QR Factorization
– Householder method

• Singular Value Decomposition

• Total least squares

• Practical notes

Review: Condition Number

• Cond(A) is function of A

• Cond(A) >= 1, bigger is bad

• Measures how change in input propagates to
output:

• E.g., if cond(A) = 451 then can lose
log(451)= 2.65 digits of accuracy in x,
compared to precision of A

|| ∆x ||
|| x ||

≤ cond(A)
|| ∆A ||
|| A ||

Normal Equations are Bad

• Normal equations involves solving ATAx = ATb

• cond(ATA) = [cond(A)]2

• E.g., if cond(A) = 451 then can lose log(4512) = 5.3
digits of accuracy, compared to precision of A

|| ∆x ||
|| x ||

≤ cond(A)
|| ∆A ||
|| A ||

QR Decomposition

What if we didn’t have to use ATA?

• Suppose we are “lucky”:

• Upper triangular matrices are nice!

bx
R

x =




































≅





























0

#
#
#
#
#
#
#

000

00
#00

00
##0
###













How to make A upper-triangular?

• Gaussian elimination?
– Applying elimination yields MAx = Mb

– Want to find x s.t. minimizes ||Mb-MAx||2

– Problem: ||Mv||2 != ||v||2 (i.e., M might “stretch”
a vector v)

– Another problem: M may stretch different vectors
differently

– i.e., M does not preserve Euclidean norm

– i.e., x that minimizes ||Mb-MAx|| may not be
same x that minimizes Ax=b

QR Factorization

• Find upper-triangular R and orthogonal Q s.t.

• Doesn’t change least-squares solution
– QTQ=I, columns of Q are orthonormal

– i.e., Q preserves Euclidean norm: ||Qv||2=||v||2

bQx
RR

QA T=















=

0
 so ,

0

Goal of QR



























=







=

0000
000
?0

0
0

???

0










Q
R

QA
m×n

m×m m×n

R:
n×n,

upper tri.

(m-n)×n,
all zeros

Reformulating Least Squares using QR

2

22

2

22
2

21

2

2

2

2

2

2

2

2

2

2

c

cRxc

x
O
R

bQ

x
O
R

QQbQ

x
O
R

Qb

Axbr

T

TT

=

+−=









−=









−=









−=

−=









=

O
R

QAbecause

because Q preserves lengths

if we call 







=

2

1

c
c

bQT

if we choose x such that Rx=c1

because Q is orthogonal (QTQ=I)

Householder Method for Computing
QR Decomposition

Orthogonalization for Factorization

• Rough idea:
– For each i-th column of A, “zero out” rows i+1 and

lower

– Accomplish this by multiplying A with an orthogonal
matrix Hi

– Equivalently, apply an orthogonal transformation to
the i-th column (e.g., rotation, reflection)

– Q becomes product H1*…*Hn, R contains zero-ed
out columns









=

O
R

QA

Householder Transformation

• Accomplishes the critical sub-step of
factorization:
– Given any vector (e.g., a column of A), reflect it so

that its last p elements become 0.

– Reflection preserves length (Euclidean norm)

(4, 3)

(-5, 0)

Outcome of Householder









=

=









=

O
R

HHQ
HHQ

O
R

AHH

n

n
T

n

Q=A so

 so
 where

1

1

1







Review: Least Squares using QR

2

22

2

22
2

21

2

2

2

2

2

2

2

2

2

2

c

cRxc

x
O
R

bQ

x
O
R

QQbQ

x
O
R

Qb

Axbr

T

TT

=

+−=









−=









−=









−=

−=









=

O
R

QAbecause

because Q preserves lengths

if we call 







=

2

1

c
c

bQT

if we choose x such that Rx=c1

because Q is orthogonal (QTQ=I)

Using Householder

• Iteratively compute H1, H2, … Hn and apply to
A to get R

– also apply to b to get

• Solve for Rx=c1 using back-substitution









=

2

1

c
c

bQT

Alternative Orthogonalization Methods

• Givens:
– Don’t reflect; rotate instead

– Introduces zeroes into A one at a time

– More complicated implementation than Householder

– Useful when matrix is sparse

• Gram-Schmidt
– Iteratively express each new column vector as a linear

combination of previous columns, plus some (normalized)
orthogonal component

– Conceptually nice, but suffers from subtractive cancellation

Singular Value Decomposition

Motivation #1

• Diagonal matrices are even nicer than triangular
ones:





























≅





























#
#
#
#
#
#
#

000

00
#00
000
00#0
000#

x











Motivation #2

• What if you have fewer data points than
parameters in your function?
– i.e., A is “fat”

– Intuitively, can’t do standard least squares

– Recall that solution takes the form ATAx = ATb

– When A has more columns than rows,
ATA is singular: can’t take its inverse, etc.

Motivation #3

• What if your data poorly constrains the
function?

• Example: fitting to y=ax2+bx+c

Underconstrained Least Squares

• Problem: if problem very close to singular,
roundoff error can have a huge effect
– Even on “well-determined” values!

• Can detect this:
– Uncertainty proportional to covariance C = (ATA)-1

– In other words, unstable if ATA has small values

– More precisely, care if xT(ATA)x is small for any x

• Idea: if part of solution unstable, set answer to 0
– Avoid corrupting good parts of answer

Singular Value Decomposition (SVD)

• Handy mathematical technique that has
application to many problems

• Given any m×n matrix A, algorithm to find
matrices U, V, and W such that

A = U W VT

U is m×n and orthonormal

W is n×n and diagonal

V is n×n and orthonormal

SVD

• Based on Householder reduction, QR
decomposition, but treat as black box:
code widely available
e.g., in Matlab: [U,W,V]=svd(A,0)

T
1

00
00
00























































=























VUA

nw

w


SVD

• The wi are called the singular values of A

• If A is singular, some of the wi will be 0

• In general rank(A) = number of nonzero wi

• SVD is mostly unique (up to permutation of
singular values, or if some wi are equal)

SVD and Inverses

• Why is SVD so useful?

• Application #1: inverses

• A-1=(VT)-1 W-1 U-1 = V W-1 UT

– Using fact that inverse = transpose
for orthogonal matrices

– Since W is diagonal, W-1 also diagonal with
reciprocals of entries of W

SVD and the Pseudoinverse

• A-1=(VT)-1 W-1 U-1 = V W-1 UT

• This fails when some wi are 0
– It’s supposed to fail – singular matrix

– Happens when rectangular A is rank deficient

• Pseudoinverse: if wi=0, set 1/wi to 0 (!)
– “Closest” matrix to inverse

– Defined for all (even non-square, singular, etc.)
matrices

– Equal to (ATA)-1AT if ATA invertible

SVD and Condition Number

• Singular values used to compute Euclidean
(spectral) norm for a matrix:

cond(A) =
σmax (A)
σmin (A)

SVD and Least Squares

• Solving Ax=b by least squares:

• ATAx = ATb → x = (ATA)-1ATb

• Replace with A+: x = A+b

• Compute pseudoinverse using SVD
– Lets you see if data is singular (< n nonzero singular

values)

– Even if not singular, condition number tells you
how stable the solution will be

– Set 1/wi to 0 if wi is small (even if not exactly 0)

Total Least Squares

• One final least squares application

• Fitting a line: vertical vs. perpendicular error

Total Least Squares

• Distance from point to line:

where n is normal vector to line, a is a constant

• Minimize:

an
y

x
d

i

i
i −⋅








=



∑∑











−⋅








==

i i

i

i
i an

y

x
d

2

22 χ

Total Least Squares

• First, let’s pretend we know n, solve for a

• Then

n
y

x
m

a

an
y

x

i i

i

i i

i





⋅







=












−⋅








=

∑

∑

1

2

2χ

n
y

x
an

y

x
d

m
y

i

m
x

i

i

i
i

i

i 
⋅











−

−
=−⋅








=

Σ

Σ

Total Least Squares

• So, let’s define

and minimize












−

−
=








Σ

Σ

m
y

i

m
x

i

i

i

i

i

y

x
y

x
~

~

∑











⋅









i i

i n
y

x
2

~

~


Total Least Squares

• Write as linear system

• Have An=0
– Problem: lots of n are solutions, including n=0

– Standard least squares will, in fact, return n=0

0
~~

~~

~~

33

22

11





=




























y

x

n

n

yx

yx

yx

Constrained Optimization

• Solution: constrain n to be unit length

• So, try to minimize |An|2 subject to |n|2=1

• Expand in eigenvectors ei of ATA:

where the λi are eigenvalues of ATA

() () nnnnn  AAAAA TTT2 ==

()
2
2

2
1

2

2
22

2
11

TT
2211

µµ

µλµλ

µµ

+=

+=

+=

n

nn
n







AA
ee

Constrained Optimization

• To minimize subject to
set µmin = 1, all other µi = 0

• That is, n is eigenvector of ATA with
the smallest corresponding eigenvalue

2
22

2
11 µλµλ + 12

2
2
1 =+ µµ

SVD and Eigenvectors

• Let A=UWVT, and let xi be ith column of V

• Consider ATA xi:

• So elements of W are sqrt(eigenvalues) and
columns of V are eigenvectors of ATA

iiiiii xwwxxx 222T2TTTT

0

0

0

1

0

=























=























===








VVWVVWUWVUVWAA

Constrained Optimization

• To minimize subject to
set µmin = 1, all other µi = 0

• That is, n is eigenvector of ATA with
the smallest corresponding eigenvalue

• That is, n is column of V corresponding to
smallest singular value

2
22

2
11 µλµλ + 12

2
2
1 =+ µµ

Comparison of Least Squares Methods

• Normal equations
(ATAx = ATb)
– O(mn2) (using Cholesky)

– cond(ATA)=[cond(A)]2

– Cholesky fails if
cond(A)~1/sqrt(machine
epsilon)

• Householder
– Usually best

orthogonalization method

– O(mn2 - n3/3) operations

– Relative error is best
possible for least squares

– Breaks if cond(A) ~
1/(machine eps)

• SVD
– Expensive: mn2 + n3 with

bad constant factor

– Can handle rank-deficiency,
near-singularity

– Handy for many different
things

	QR Factorization and �Singular Value Decomposition
	Why Yet Another Method?
	Review: Condition Number
	Normal Equations are Bad
	QR Decomposition
	What if we didn’t have to use ATA?
	How to make A upper-triangular?
	QR Factorization
	Goal of QR
	Reformulating Least Squares using QR
	Householder Method for Computing QR Decomposition
	Orthogonalization for Factorization
	Householder Transformation
	Outcome of Householder
	Review: Least Squares using QR
	Using Householder
	Alternative Orthogonalization Methods
	Singular Value Decomposition
	Motivation #1
	Motivation #2
	Motivation #3
	Underconstrained Least Squares
	Singular Value Decomposition (SVD)
	SVD
	SVD
	SVD and Inverses
	SVD and the Pseudoinverse
	SVD and Condition Number
	SVD and Least Squares
	Total Least Squares
	Total Least Squares
	Total Least Squares
	Total Least Squares
	Total Least Squares
	Constrained Optimization
	Constrained Optimization
	SVD and Eigenvectors
	Constrained Optimization
	Comparison of Least Squares Methods

