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Why Yet Another Method? 

• How do we solve least-squares… 
– without incurring condition-squaring effect of normal equations 

(ATAx = ATb) 

– when A is singular, “fat”, or otherwise poorly-specified? 

• QR Factorization 
– Householder method 

• Singular Value Decomposition 

• Total least squares 

• Practical notes 
 



Review: Condition Number 

• Cond(A) is function of A 

• Cond(A) >= 1, bigger is bad 

• Measures how change in input propagates to 
output: 

 

• E.g., if cond(A) = 451 then can lose 
log(451)= 2.65 digits of accuracy in x, 
compared to precision of A 
 

 

|| ∆x ||
|| x ||

≤ cond(A)
|| ∆A ||
|| A ||



Normal Equations are Bad 

 

 

• Normal equations involves solving ATAx = ATb 

• cond(ATA) = [cond(A)]2 

• E.g., if cond(A) = 451 then can lose log(4512) = 5.3 
digits of accuracy, compared to precision of A 

 

 

|| ∆x ||
|| x ||

≤ cond(A)
|| ∆A ||
|| A ||



QR Decomposition 



What if we didn’t have to use ATA? 

• Suppose we are “lucky”: 
 

 

 

 

 

 

 

• Upper triangular matrices are nice! 
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How to make A upper-triangular? 

• Gaussian elimination? 
– Applying elimination yields MAx = Mb 

– Want to find x s.t. minimizes ||Mb-MAx||2 

– Problem: ||Mv||2 != ||v||2 (i.e., M might “stretch” 
a vector v) 

– Another problem: M may stretch different vectors 
differently 

– i.e., M does not preserve Euclidean norm 

– i.e., x that minimizes ||Mb-MAx|| may not be 
same x that minimizes Ax=b 



QR Factorization 

• Find upper-triangular R and orthogonal Q s.t. 

 

 

• Doesn’t change least-squares solution 
– QTQ=I, columns of Q are orthonormal 

– i.e., Q preserves Euclidean norm: ||Qv||2=||v||2 
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Goal of QR 
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Reformulating Least Squares using QR 
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Householder Method for Computing 
QR Decomposition 



Orthogonalization for Factorization 

• Rough idea:  
– For each i-th column of A, “zero out” rows i+1 and 

lower 

– Accomplish this by multiplying A with an orthogonal 
matrix Hi 

– Equivalently, apply an orthogonal transformation to 
the i-th column (e.g., rotation, reflection) 

– Q becomes product H1*…*Hn, R contains zero-ed 
out columns 









=

O
R

QA



Householder Transformation 

• Accomplishes the critical sub-step of 
factorization: 
– Given any vector (e.g., a column of A), reflect it so 

that its last p elements become 0. 

– Reflection preserves length (Euclidean norm) 

(4, 3) 

(-5, 0) 



Outcome of Householder 
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Review: Least Squares using QR 
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Using Householder 

• Iteratively compute H1, H2, … Hn and apply to 
A to get R  

– also apply to b to get 

 

  

• Solve for Rx=c1 using back-substitution 
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Alternative Orthogonalization Methods 

• Givens: 
– Don’t reflect; rotate instead 

– Introduces zeroes into A one at a time 

– More complicated implementation than Householder 

– Useful when matrix is sparse 

• Gram-Schmidt 
– Iteratively express each new column vector as a linear 

combination of previous columns, plus some (normalized) 
orthogonal component 

– Conceptually nice, but suffers from subtractive cancellation  



Singular Value Decomposition 



Motivation #1 

• Diagonal matrices are even nicer than triangular 
ones: 
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Motivation #2 

• What if you have fewer data points than 
parameters in your function? 
– i.e., A is “fat” 

– Intuitively, can’t do standard least squares 

– Recall that solution takes the form ATAx = ATb 

– When A has more columns than rows, 
ATA is singular: can’t take its inverse, etc. 



Motivation #3 

• What if your data poorly constrains the 
function? 

• Example: fitting to y=ax2+bx+c 



Underconstrained Least Squares 

• Problem: if problem very close to singular, 
roundoff error can have a huge effect 
– Even on “well-determined” values! 

• Can detect this: 
– Uncertainty proportional to covariance C = (ATA)-1 

– In other words, unstable if ATA has small values 

– More precisely, care if xT(ATA)x is small for any x 

• Idea: if part of solution unstable, set answer to 0 
– Avoid corrupting good parts of answer 



Singular Value Decomposition (SVD) 

• Handy mathematical technique that has 
application to many problems 

• Given any m×n matrix A, algorithm to find 
matrices U, V, and W such that 

A = U W VT 

U is m×n and orthonormal 

W is n×n and diagonal 

V  is n×n and orthonormal 



SVD 

• Based on Householder reduction, QR 
decomposition, but treat as black box: 
code widely available 
e.g., in Matlab: [U,W,V]=svd(A,0) 
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SVD 

• The wi are called the singular values of A 

• If A is singular, some of the wi will be 0 

• In general rank(A) = number of nonzero wi 

• SVD is mostly unique (up to permutation of 
singular values, or if some wi are equal) 



SVD and Inverses 

• Why is SVD so useful? 

• Application #1: inverses 

• A-1=(VT)-1 W-1 U-1 = V W-1 UT 

– Using fact that inverse = transpose 
for orthogonal matrices 

– Since W is diagonal, W-1 also diagonal with 
reciprocals of entries of W 



SVD and the Pseudoinverse 

• A-1=(VT)-1 W-1 U-1 = V W-1 UT 

• This fails when some wi are 0 
– It’s supposed to fail – singular matrix 

– Happens when rectangular A is rank deficient 

• Pseudoinverse: if wi=0, set 1/wi to 0 (!) 
– “Closest” matrix to inverse 

– Defined for all (even non-square, singular, etc.) 
matrices 

– Equal to (ATA)-1AT if ATA invertible 



SVD and Condition Number 

• Singular values used to compute Euclidean 
(spectral) norm for a matrix: 

 

 

 

 

cond(A) =
σmax (A)
σmin (A)



SVD and Least Squares 

• Solving Ax=b by least squares: 

• ATAx = ATb  →  x = (ATA)-1ATb 

• Replace with A+:  x = A+b 

• Compute pseudoinverse using SVD 
– Lets you see if data is singular (< n nonzero singular 

values) 

– Even if not singular, condition number tells you 
how stable the solution will be 

– Set 1/wi to 0 if wi is small (even if not exactly 0) 



Total Least Squares 

• One final least squares application 

• Fitting a line: vertical vs. perpendicular error 



Total Least Squares 

• Distance from point to line: 
 
 
where n is normal vector to line, a is a constant 

• Minimize: 
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Total Least Squares 

• First, let’s pretend we know n, solve for a 
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Total Least Squares 

• So, let’s define 
 
 
and minimize 
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Total Least Squares 

• Write as linear system 

 

 

 

• Have An=0 
– Problem: lots of n are solutions, including n=0 

– Standard least squares will, in fact, return n=0 
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Constrained Optimization 

• Solution: constrain n to be unit length 

• So, try to minimize |An|2 subject to |n|2=1 

 

• Expand in eigenvectors ei of ATA: 
 
 
 
where the λi are eigenvalues of ATA 
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Constrained Optimization 

• To minimize                  subject to 
set µmin = 1, all other µi = 0 

• That is, n is eigenvector of ATA with 
the smallest corresponding eigenvalue 
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SVD and Eigenvectors 

• Let A=UWVT, and let xi be ith column of V 

• Consider ATA xi: 

 

 

 

• So elements of W are sqrt(eigenvalues) and 
columns of V are eigenvectors of ATA 
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Constrained Optimization 

• To minimize                  subject to 
set µmin = 1, all other µi = 0 

• That is, n is eigenvector of ATA with 
the smallest corresponding eigenvalue 

• That is, n is column of V corresponding to 
smallest singular value 
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Comparison of Least Squares Methods 

• Normal equations 
(ATAx = ATb) 
– O(mn2) (using Cholesky) 

– cond(ATA)=[cond(A)]2 

– Cholesky fails if 
cond(A)~1/sqrt(machine 
epsilon) 

• Householder 
– Usually best 

orthogonalization method 

– O(mn2 - n3/3) operations 

– Relative error is best 
possible for least squares 

– Breaks if cond(A) ~ 
1/(machine eps) 

• SVD 
– Expensive: mn2 + n3 with 

bad constant factor 

– Can handle rank-deficiency, 
near-singularity 

– Handy for many different 
things 
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