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Last time 

• Data modeling 

• Motivation of least-squares error 

• Formulation of linear least-squares model:  

 

 

• Solving using normal equations, pseudoinverse 

• Illustrating least-squares with special cases: constant, line 

• Weighted least squares 

• Evaluating model quality 
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Nonlinear Least Squares 

• Some problems can be rewritten to linear 

 

 

 

• Fit data points (xi, log yi) to a*+bx, a = ea* 

• Big problem: this no longer minimizes 
squared error! 
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Nonlinear Least Squares 

• Can write error function, minimize directly 

 

 

• For the exponential, no analytic solution for a, b: 
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Newton’s Method 

• Apply Newton’s method for minimization: 
– 1-dimensional:  

 

– n-dimensional: 

 

  

 where H is Hessian (matrix of all 2nd derivatives) 
and G is gradient (vector of all 1st derivatives) 
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Newton’s Method 

• Apply Newton’s method for minimization: 
– 1-dimensional:  

 

– n-dimensional: 

 

 

 where H is Hessian (matrix of all 2nd derivatives) 
and G is gradient (vector of all 1st derivatives) 
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Newton’s Method for Least Squares 

 

 

 

 

 

 

• Gradient has 1st derivatives of  f, Hessian 2nd 
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Gauss-Newton Iteration 

• Consider 1 term of Hessian: 

 

 

 

 

• If close to answer, residual is close to 0, 
so ignore it → eliminates need for 2nd derivatives 
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Gauss-Newton Iteration 

• Consider 1 term of Hessian: 

 

 

 

 

• The Gauss-Newton method approximates 
 
(Only for least-squares!) 
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Gauss-Newton Iteration 
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Example: Logistic Regression 

• Model probability of an event based on 
values of explanatory variables, using 
generalized linear model, logistic function g(z) 
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Logistic Regression 

• Assumes positive and negative examples are 
normally distributed, with different means but 
same variance 

• Applications: predict odds of election victories, 
sports events, medical outcomes, etc. 

• Estimate parameters a, b, … using Gauss-Newton 
on individual positive, negative examples 

• Handy hint: g’(z) = g(z) (1-g(z)) 



Gauss-Newton++:  
The Levenberg-Marquardt Algorithm 



Levenberg-Marquardt 

• Newton (and Gauss-Newton) work well when 
close to answer, terribly when far away 

• Steepest descent safe when far away 

• Levenberg-Marquardt idea: let’s do both 
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Levenberg-Marquardt 

• Trade off between constants depending on how far 
away you are… 

• Clever way of doing this: 

 

 

 

• If λ is small, mostly like Gauss-Newton 

• If λ is big, matrix becomes mostly diagonal, 
behaves like steepest descent 
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Levenberg-Marquardt 

• Final bit of cleverness: adjust λ depending on 
how well we’re doing 
– Start with some λ, e.g. 0.001 

– If last iteration decreased error, accept the step and 
decrease λ to λ/10 

– If last iteration increased error, reject the step and 
increase λ to 10λ 

• Result: fairly stable algorithm, not too painful 
(no 2nd derivatives), used a lot 



Dealing with Outliers 



Outliers 

• A lot of derivations assume Gaussian distribution 
for errors 

• Unfortunately, nature (and experimenters) 
sometimes don’t cooperate 

 

• Outliers: points with extremely low probability 
of occurrence (according to Gaussian statistics) 

• Can have strong influence on least squares 

probability 

Gaussian 
Non-Gaussian 



Example: without outlier 
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Example: with outlier 
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Robust Estimation 

• Goal: develop parameter estimation methods 
insensitive to small numbers of large errors 

• General approach: try to give large deviations 
less weight 

• e.g., Median is a robust measure, mean is not 

• M-estimators: minimize some function other 
than square of y – f(x,a,b,…) 



Least Absolute Value Fitting 

• Minimize 
instead of 

 

• Points far away from trend get comparatively 
less influence 
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Example: Constant 

• For constant function  y = a, 
minimizing  Σ(y–a)2  gave   a = mean 

• Minimizing  Σ|y–a|  gives  a = median 



Least Squares vs. Least Absolute Deviations 

• LS: 
– Not robust 

– Stable, unique solution 

– Solve with normal equations, Gauss-Newton, etc. 

• LAD 
– Robust 

– Unstable, not necessarily unique 

– Nasty function (discontinuous derivative): 
requires iterative solution method (e.g. simplex) 



Iteratively Reweighted Least Squares 

• Sometimes-used approximation: 
convert to iteratively weighted least squares 
 
 
 
 
 
with wi based on previous iteration 
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Review: Weighted Least Squares 

• Define weight matrix W as 

 

 

 

 

• Then solve weighted least squares via 
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M-Estimators 

Different options for weights 
– Give even less weight to outliers 
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Iteratively Reweighted Least Squares 

• Danger!  This is not guaranteed to converge 
to the right answer! 
– Needs good starting point, which is available if 

initial least squares estimator is reasonable 

– In general, works OK if few outliers, not too far off 



Outlier Detection and Rejection 

• Special case of IRWLS: set weight = 0 if outlier, 
1 otherwise 

• Detecting outliers: (yi–f(xi))2 > threshold 
– One choice: multiple of mean squared difference 

– Better choice: multiple of median squared difference 

– Can iterate… 

– As before, not guaranteed to do anything reasonable, 
tends to work OK if only a few outliers 



RANSAC 

• RANdom SAmple Consensus: desgined for 
bad data (in best case, up to 50% outliers) 

• Take many minimal random subsets of data 
– Compute fit for each sample 

– See how many points agree: (yi–f(xi))2 < threshold 

– Threshold user-specified or estimated from more trials 

• At end, use fit that agreed with most points 
– Can do one final least squares with all inliers 



RANSAC 



Least Squares in Practice 



Least Squares in Practice 

• More data is better 
– uncertainty in estimated parameters goes down slowly: 

like 1/sqrt(# samples) 

• Good correlation doesn’t mean a model is good 
– use visualizations and reasoning, too.  
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Anscombe’s Quartet 

y = 3.0 + 0.5x 
r = 0.82 



Anscombe’s Quartet 



Least Squares in Practice 

• More data is better 

• Good correlation doesn’t mean a model is good 

• Many circumstances call for (slightly) more 
sophisticated models than least squares 
– Generalized linear models, regularized models 

(e.g., LASSO), PCA, … 

 

 



Residuals depend on x (heteroscedastic): 
Assumptions of linear least squares not met 



Least Squares in Practice 

• More data is better 

• Good correlation doesn’t mean a model is good 

• Many circumstances call for (slightly) more 
sophisticated models than linear LS 

• Sometimes a model’s fit can be too good 
(“overfitting”)  
– more parameters may make it easier to overfit 

 

 



Overfitting 



Least Squares in Practice 

• More data is better 

• Good correlation doesn’t mean a model is good 

• Many circumstances call for (slightly) more 
sophisticated models than linear LS 

• Sometimes a model’s fit can be too good 

• All of these minimize “vertical” squared distance 
– Square, vertical distance not always appropriate 
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