Constrained Optimization

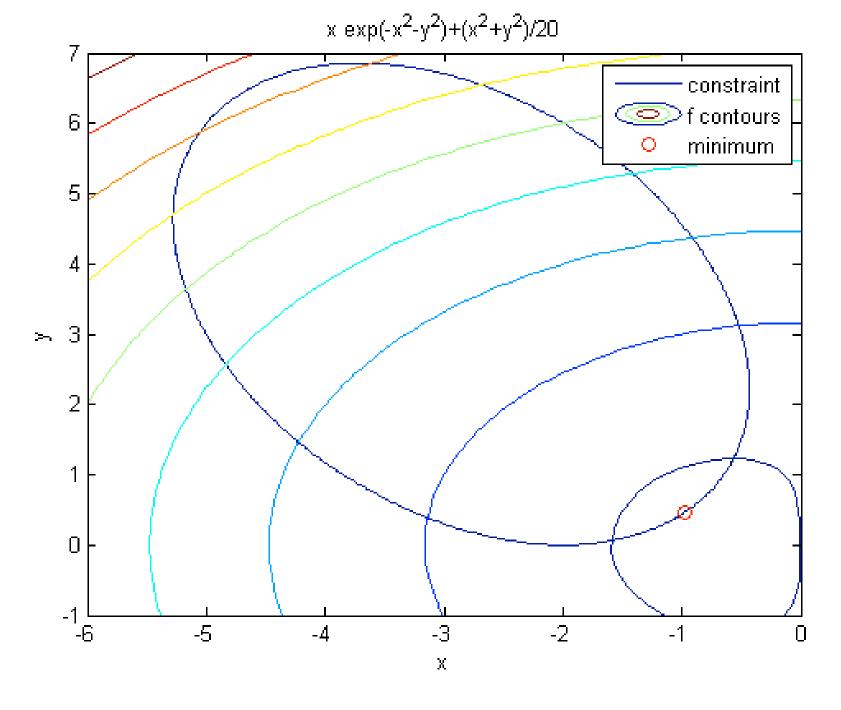
COS 323

Last time

- Introduction to optimization
 - objective function, variables, [constraints]
- 1-dimensional methods
 - Golden section, discussion of error
 - Newton's method
- Multi-dimensional methods
 - Newton's method, steepest descent, conjugate gradient
- General strategies, value-only methods

Today

- Linearly constrained optimization
 - Linear programming (LP)
 - Simplex method for LP
- General optimization with equality constraints
 - Lagrange multipliers



Linear Programming: Linear Objective + Linear Constraints

Standard form: maximize objective

$$\zeta = c_1 x_1 + c_2 x_2 + \cdots$$

with *primary* constraints

$$x_1 \ge 0, x_2 \ge 0, \cdots$$

and additional constraints

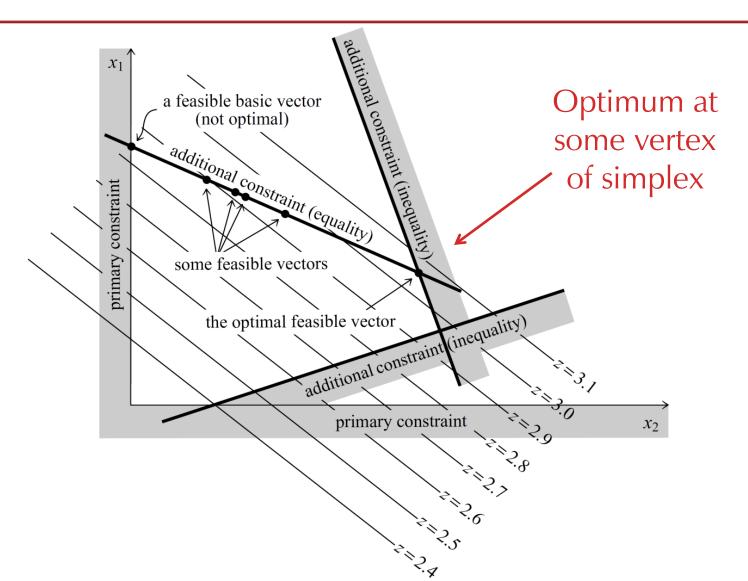
$$a_{11}x_1 + a_{12}x_2 + \dots \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots \le b_2$

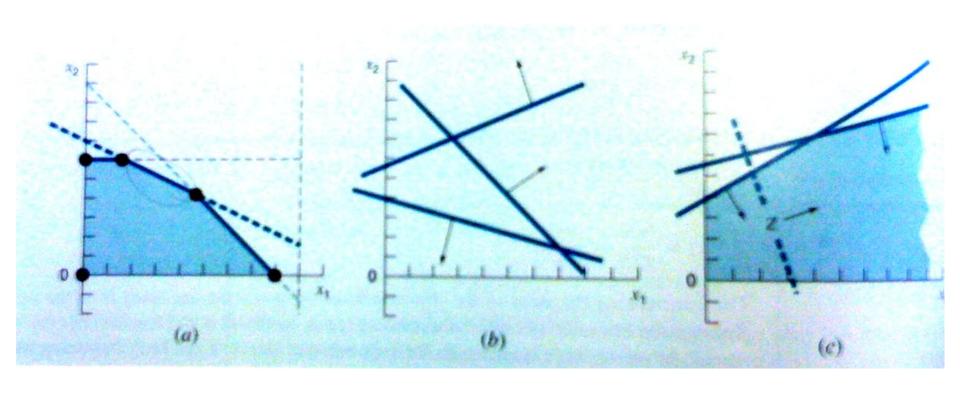
Why Linear Programming?

- What is the cheapest combination of foods that meets your nutritional needs?
- How do you minimize the risk in your investment portfolio, subject to achieving a given return?
- How should an airline assign crews to flights?

Linear Objective + Linear Constraints



Possible outcomes



Optimum at vertex

Inconsistent

Unbounded

Simplex Method

- [Dantzig]'s Simplex Method
- Basic idea:
 - Phase I: Find a "basic feasible solution":
 A vertex satisfying all constraints.
 - Phase II: Traverse vertices of the polytope along edges for which objective function is *strictly decreasing*
 - At any vertex, some *n* constraints are satisfied with exact equality

Simplex Form

 Transform each inequality constraint to an equality constraint using slack variables

$$x_1 + 2x_3 \le 740 \qquad x_1 + 2x_3 + y_1 = 740$$

$$2x_2 - 7x_4 \le 0$$

$$x_2 - x_3 + 2x_4 \ge \frac{1}{2}$$

$$x_1 + x_2 + x_3 + x_4 = 9$$

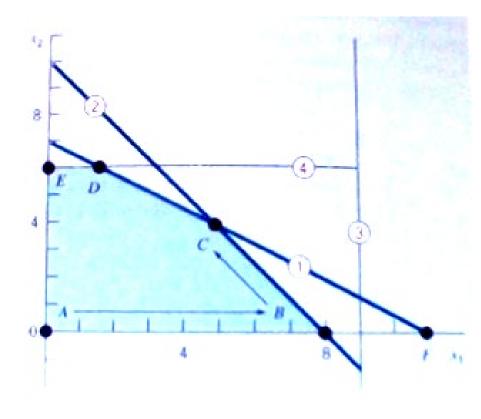
$$2x_2 - 7x_4 + y_2 = 0$$

$$x_2 - x_3 + 2x_4 - y_3 = \frac{1}{2}$$

$$x_1 + x_2 + x_3 + x_4 = 9$$

An underdetermined system

- Normalized form:
 m equations with n unknowns,
 with m < n
- Solve by setting (n m)
 variables to 0 and solving
 for remaining m
 unknowns



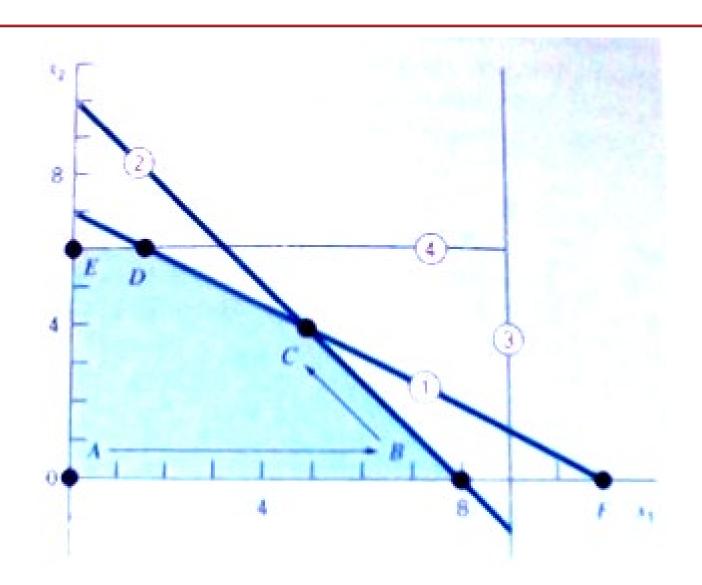
$$C_m^n = \frac{n!}{m!(n-m)!}$$

systems of equations 🕾

Simplex method vertex traversal

- Start with a basic feasible solution
 - Set (n-m) variables to 0: "non-basic variables"
 - Solve for remaining m "basic variables": If they're ≥ 0 , then it's feasible
- Traverse an edge:
 - "Swap" a basic w/ a non-basic variable
 - Increase the value of the basic variable that has the biggest potential impact on the objective, and increase until another constraint is encountered (i.e., leaving basic variable becomes 0)

Results of simplex method



For more information

Numerical Recipes in C chapter on linear programming:

http://www.nrbook.com/a/bookcpdf/c10-8.pdf

 Interactive Java applet: <u>http://campuscgi.princeton.edu/~rvdb/JAVA/piv</u> ot/simple.html

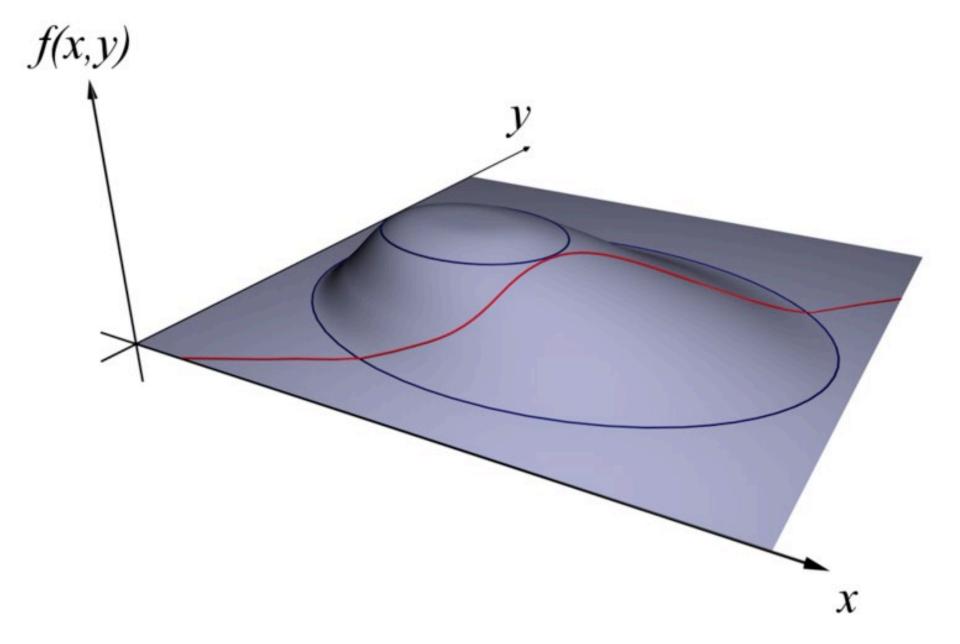
Comments on Simplex Method

- In theory: can take very long exponential in the input length
- In practice: efficient # of iterations typically a few times # of constraints
 - Should take care to detect cycles
- There exist provably polynomial-time algorithms

Beyond linear optimization

General Optimization with Equality Constraints

• Minimize f(x) subject to $g_i(x) = 0$

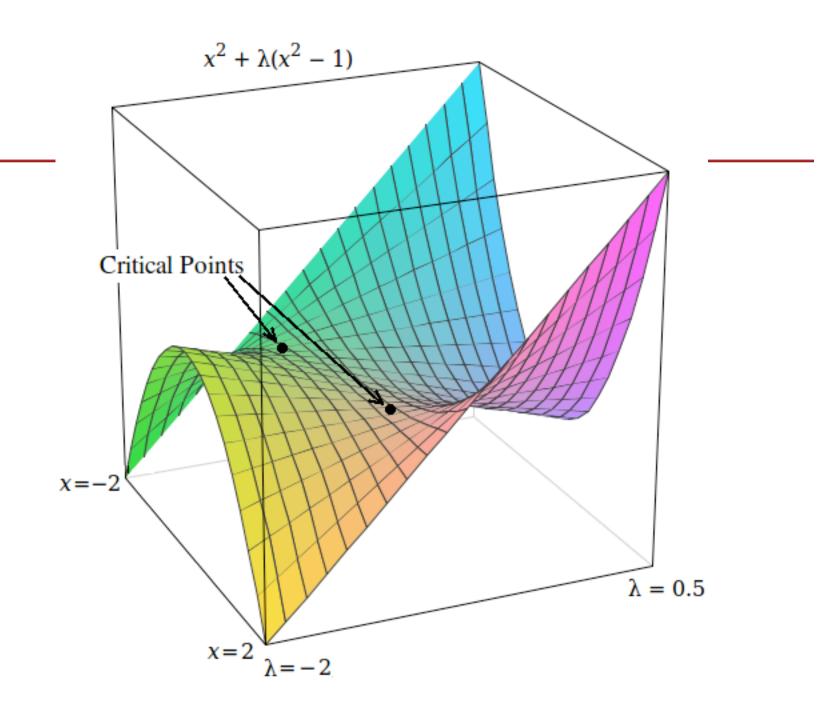


General Optimization with Equality Constraints

- Minimize f(x) subject to $g_i(x) = 0$
- Method of Lagrange multipliers: convert to a higher-dimensional problem

• Find **critical points** of $f(x) + \sum \lambda_i g_i(x)$

w.r.t.
$$(x_1 ... x_n; \lambda_1 ... \lambda_k)$$



Comments on Lagrange Multipliers

- A way of re-defining an optimization problem in terms of a necessary condition for optimality
 - not an algorithm for finding optimal points!
- Use other method to find critical points
- Sometimes lambdas are interesting in themselves
 - Lagrangian mechanics
 - "Shadow pricing" in economics: The "marginal cost" of a constraint