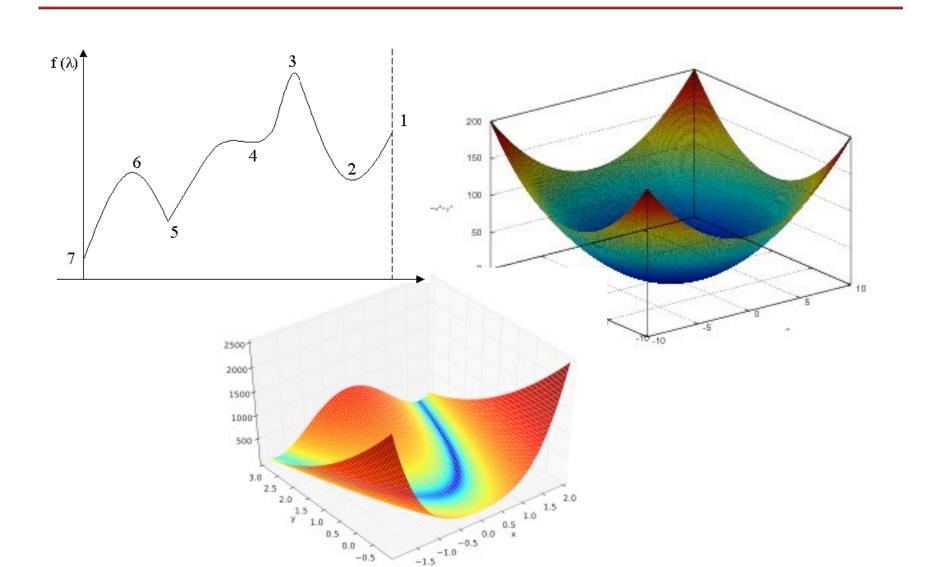
Optimization



Last time

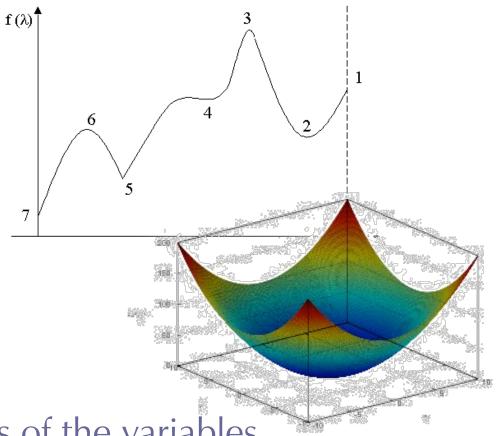
- Root finding: definition, motivation
- Algorithms: Bisection, false position, secant, Newton-Raphson
- Convergence & tradeoffs
- Example applications of Newton's method
- Root finding in > 1 dimension

Today

- Introduction to optimization
- Definition and motivation
- 1-dimensional methods
 - Golden section, discussion of error
 - Newton's method
- Multi-dimensional methods
 - Newton's method, steepest descent, conjugate gradient
- General strategies, value-only methods

Ingredients

- Objective function
- Variables
- Constraints



Find values of the variables that minimize or maximize the objective function while satisfying the constraints

Different Kinds of Optimization

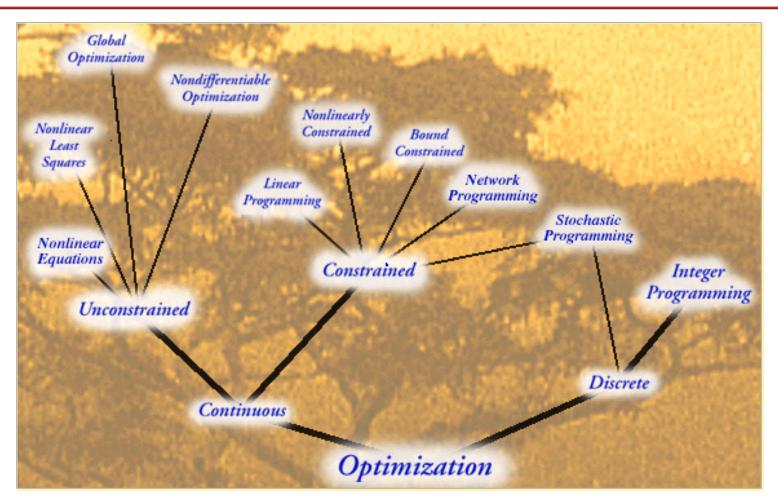
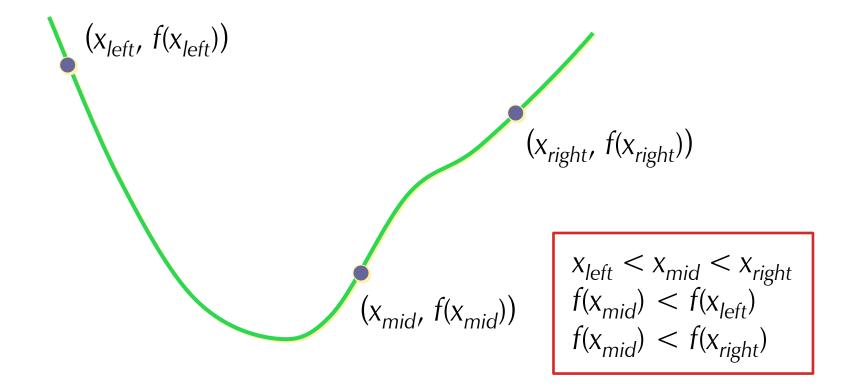


Figure from: Optimization Technology Center http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/

Different Optimization Techniques

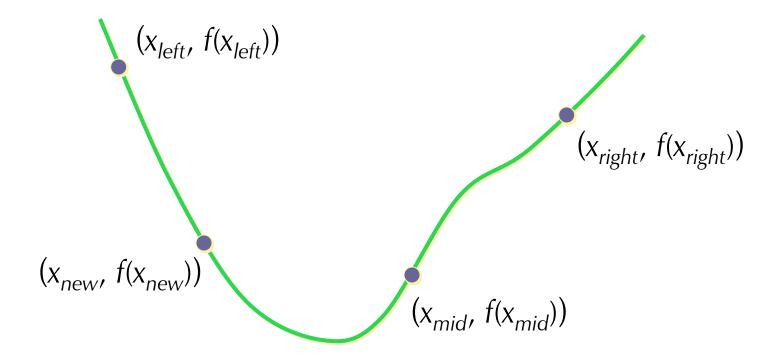
- Algorithms have very different flavor depending on specific problem
 - Closed form vs. numerical vs. discrete
 - Local vs. global minima
 - Running times ranging from O(1) to NP-hard
- Today:
 - Focus on continuous numerical methods

- Look for analogies to bracketing in root-finding
- What does it mean to bracket a minimum?

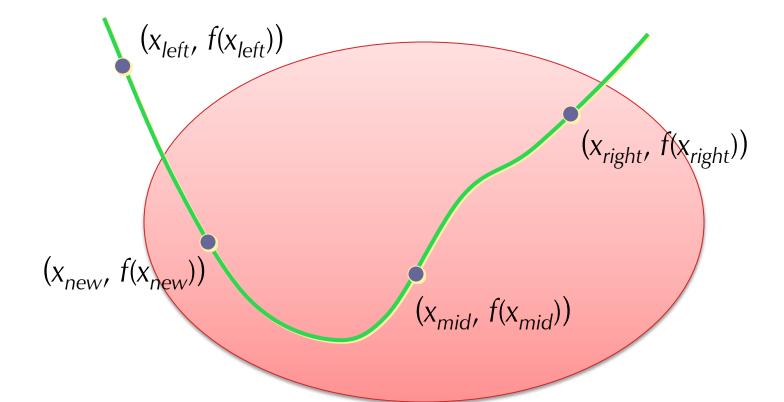


- Once we have these properties, there is at least one local minimum between x_{left} and x_{right}
- Establishing bracket initially:
 - Given $x_{initial}$, increment
 - Evaluate $f(x_{initial})$, $f(x_{initial} + increment)$
 - If decreasing, step until find an increase
 - Else, step in opposite direction until find an increase
 - Grow increment (by a constant factor) at each step
- For maximization: substitute f for f

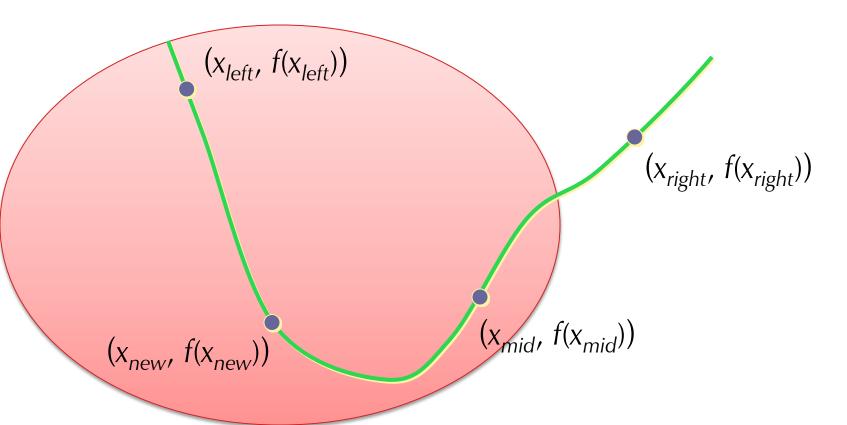
• Strategy: evaluate function at some x_{new}



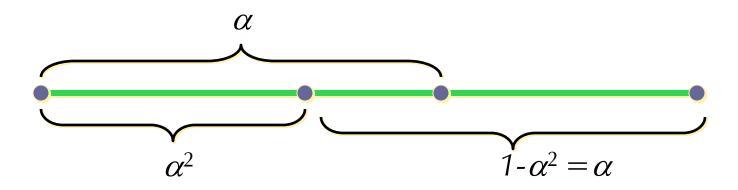
- Strategy: evaluate function at some x_{new}
 - Here, new "bracket" points are x_{new} , x_{mid} , x_{right}



- Strategy: evaluate function at some x_{new}
 - Here, new "bracket" points are x_{left} , x_{new} , x_{mid}



- Unlike with root-finding, can't always guarantee that interval will be reduced by a factor of 2
- Let's find the optimal place for x_{mid} , relative to left and right, that will guarantee same factor of reduction regardless of outcome



if
$$f(x_{new}) < f(x_{mid})$$

new interval = α

else

new interval = $1-\alpha^2$

Golden Section Search

- To assure same interval, want $\alpha = 1-\alpha^2$
- So,

$$\alpha = \frac{\sqrt{5} - 1}{2} = \Phi$$

- This is the reciprocal of the "golden ratio" = 0.618...
- So, interval decreases by 30% per iteration
 - Linear convergence

Sources of Error

- When we "find" a minimum value, x, why is it different from true minimum x_{min} ?
 - 1. Obvious: width of bracket

$$\left| x - x_{\min} \right| \le x_{right} - x_{left}$$

2. Less obvious: floating point representation

$$\left| \frac{f(x_{\min}) - f(x)}{f(x_{\min})} \right| \le \varepsilon_{mach}$$

Stopping Criterion for Golden Section

- Q: When is $(x_{right} x_{left})$ small enough that discrepancy between x and x_{min} limited by rounding error in $f(x_{min})$?
- Use Taylor series, knowing that $f'(x_{min})$ is around 0...

$$f(x) \approx f(x_{min}) + 0 + \frac{1}{2} f''(x_{min}) (x - x_{min})^2$$

• So, the condition $\left| \frac{f(x_{\min}) - f(x)}{f(x_{\min})} \right| \le \varepsilon_{mach}$

holds where
$$|x-x_{min}| \le \sqrt{\varepsilon_{mach}} \frac{2f(x_{min})}{f''(x_{min})}$$

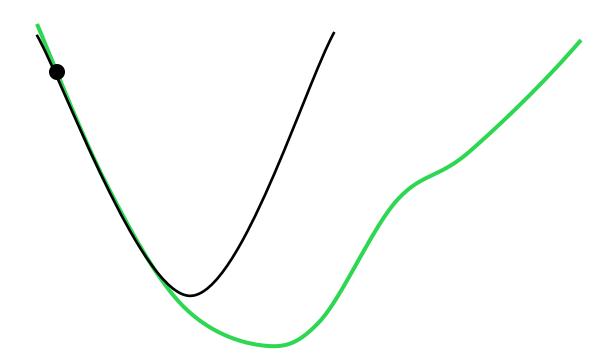
Implications

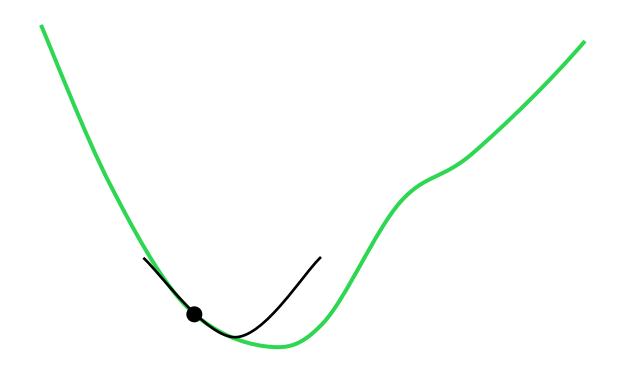
• Rule of thumb: pointless to ask for more accuracy than $sqrt(\varepsilon)$

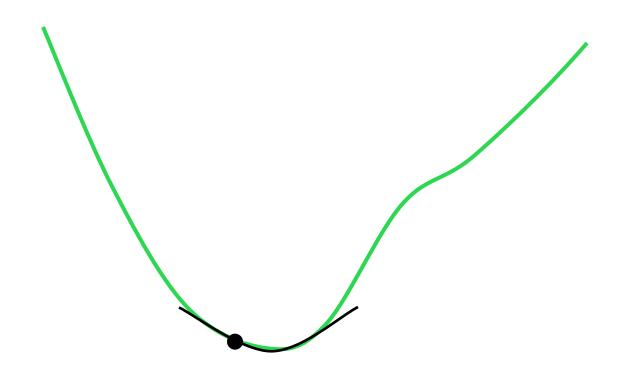
- Q:, what happens to # of accurate digits in results when you switch from single precision (~7 digits) to double (~16 digits) for x, f(x)?
 - A: Gain only ~4 more accurate digits.

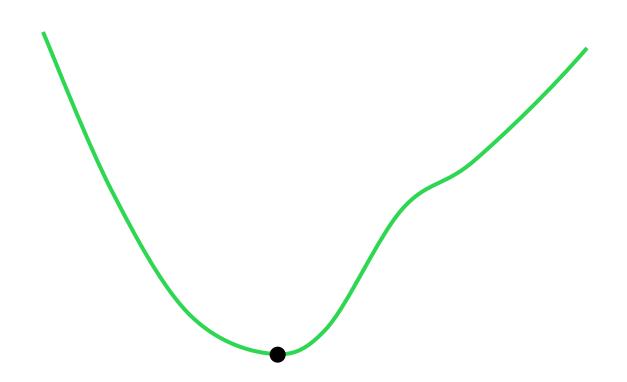
Faster 1-D Optimization

- Trade off super-linear convergence for worse robustness
 - Combine with Golden Section search for safety
- Usual bag of tricks:
 - Fit parabola through 3 points, find minimum
 - Compute derivatives as well as positions, fit cubic
 - Use second derivatives: Newton









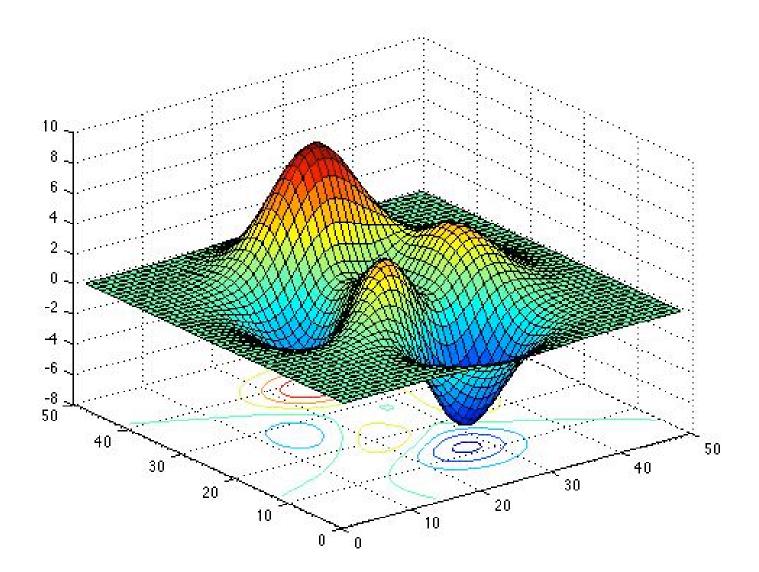
At each step:

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

- Requires 1st and 2nd derivatives
- Quadratic convergence

Questions?

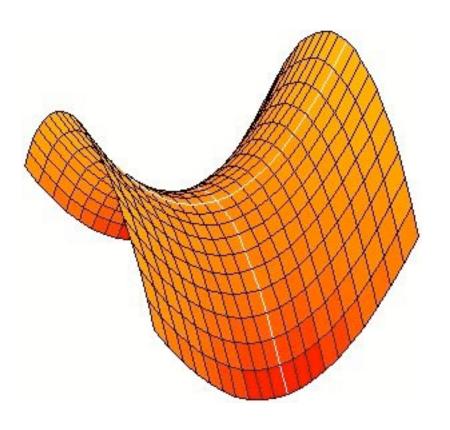
Multidimensional Optimization



Multi-Dimensional Optimization

- Important in many areas
 - Finding best design in some parameter space
 - Fitting a model to measured data
- Hard in general
 - Multiple extrema, saddles, curved/elongated valleys, etc.
 - Can't bracket (but there are "trust region" methods)
- In general, easier than rootfinding
 - Can always walk "downhill"
 - Minimizing one scalar function, not simultaneously satisfying multiple functions

Problem with Saddle



Newton's Method in Multiple Dimensions

Replace 1st derivative with gradient,
 2nd derivative with Hessian

$$f(x, y)$$

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

Newton's Method in Multiple Dimensions

- in 1 dimension: $x_{k+1} = x_k \frac{f'(x_k)}{f''(x_k)}$ Replace 1st derivative with gradient,
 - 2nd derivative with Hessian
 - So,

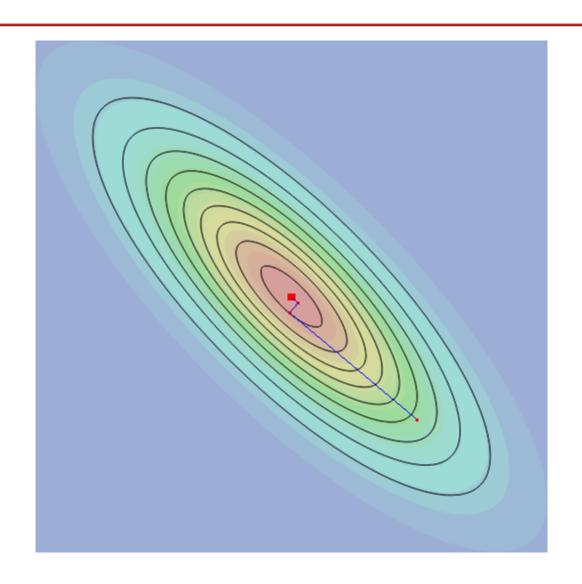
$$\vec{x}_{k+1} = \vec{x}_k - H^{-1}(\vec{x}_k) \nabla f(\vec{x}_k)$$

 Can be fragile unless function smooth and starting close to minimum

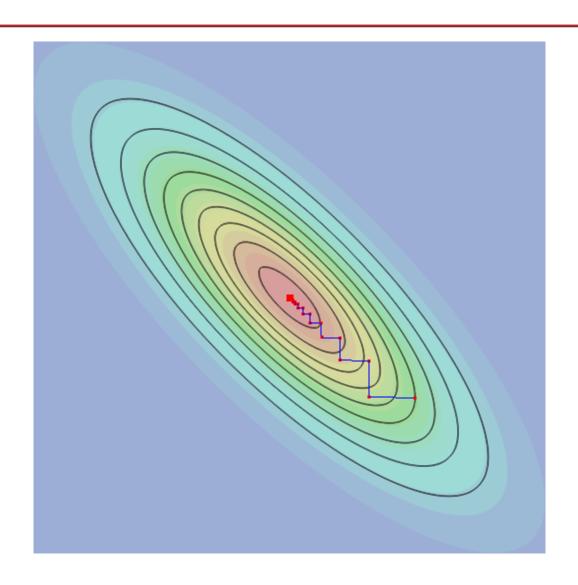
Other Methods

- What if you can't / don't want to use 2nd derivative?
- "Quasi-Newton" methods estimate Hessian
- Alternative: walk along (negative of) gradient...
 - Perform 1-D minimization along line passing through current point in the direction of the gradient
 - Once done, re-compute gradient, iterate

Steepest Descent



Problem With Steepest Descent



Conjugate Gradient Methods

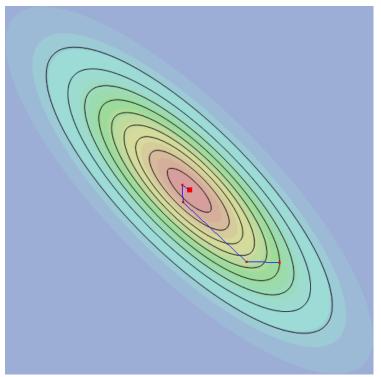
- Idea: avoid "undoing" minimization that's already been done
- Walk along direction

$$d_{k+1} = -g_{k+1} + \beta_k d_k$$

where g is gradient

Polak and Ribiere formula:

$$\beta_k = \frac{g_{k+1}^{\mathrm{T}}(g_{k+1} - g_k)}{g_k^{\mathrm{T}}g_k}$$



Conjugate Gradient Methods

- Conjugate gradient implicitly obtains information about Hessian
- For quadratic function in n dimensions, gets exact solution in n steps (ignoring roundoff error)
- Works well in practice...

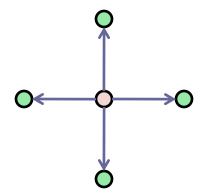
Value-Only Methods in Multi-Dimensions

- If can't evaluate gradients, life is hard
- Can use approximate (numerically evaluated) gradients:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial e_1} \\ \frac{\partial f}{\partial e_2} \\ \frac{\partial f}{\partial e_3} \\ \vdots \end{pmatrix} \approx \begin{pmatrix} \frac{f(x+\delta \cdot e_1) - f(x)}{\delta} \\ \frac{f(x+\delta \cdot e_2) - f(x)}{\delta} \\ \frac{f(x+\delta \cdot e_3) - f(x)}{\delta} \\ \vdots \end{pmatrix}$$

Generic Optimization Strategies

- Uniform sampling
 - Cost rises exponentially with # of dimensions
- Heuristic: compass search
 - Try a step along each coordinate in turn
 - If can't find a lower value, halve step size

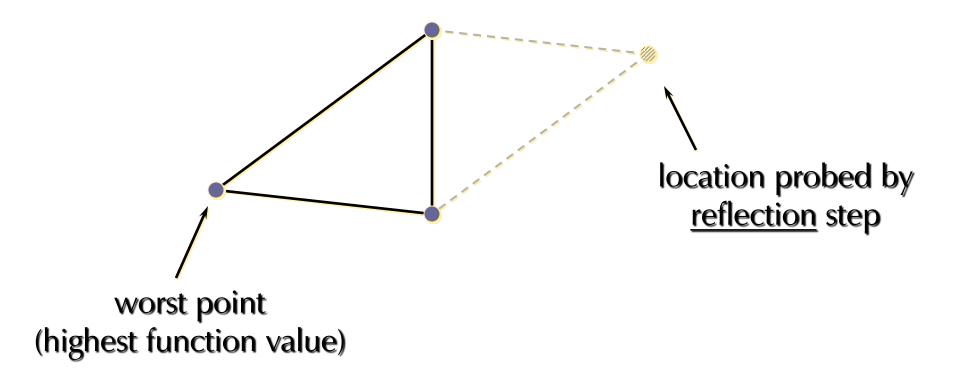


Generic Optimization Strategies

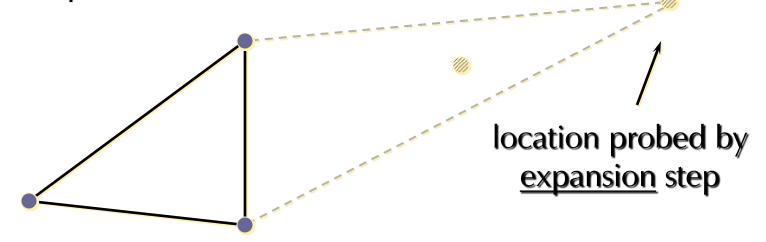
- Simulated annealing:
 - Maintain a "temperature" T
 - Pick random direction d, and try a step of size dependent on T
 - If value lower than current, accept
 - If value higher than current, accept with probability $\sim \exp((f(\mathbf{x}_{\text{current}}) f(\mathbf{x}_{\text{new}})) / T)$
 - "Annealing schedule" how fast does T decrease?
- Slow but robust: can avoid non-global minima

- Keep track of n+1 points in n dimensions
 - Vertices of a simplex (triangle in 2D tetrahedron in 3D, etc.)
- At each iteration: simplex can move, expand, or contract
 - Sometimes known as amoeba method: simplex "oozes" along the function

Basic operation: <u>reflection</u>

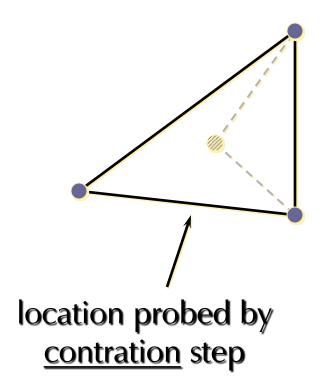


 If reflection resulted in best (lowest) value so far, try an <u>expansion</u>

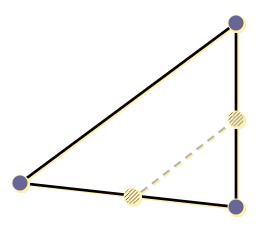


• Else, if reflection helped at all, keep it

If reflection didn't help (reflected point still worst)
 try a <u>contraction</u>



• If all else fails shrink the simplex around the best point

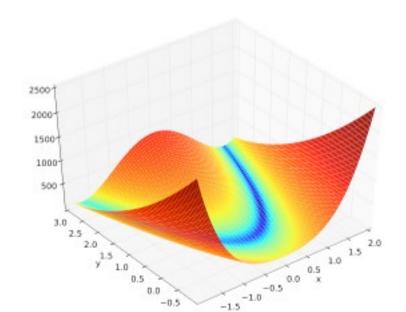


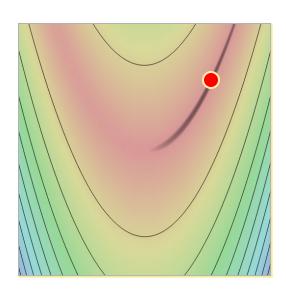
- Method fairly efficient at each iteration (typically 1-2 function evaluations)
- Can take lots of iterations
- Somewhat flakey sometimes needs *restart* after simplex collapses on itself, etc.
- Benefits: simple to implement, doesn't need derivative, doesn't care about function smoothness, etc.

Rosenbrock's Function

$$f(x,y) = 100(y-x^2)^2 + (1-x)^2$$

- Designed specifically for testing optimization techniques
- Curved, narrow valley





Demo

Global Optimization

- In general, can't guarantee that you've found global (rather than local) minimum
- Some heuristics:
 - Multi-start: try local optimization from several starting positions
 - Very slow simulated annealing
 - Use analytical methods (or graphing) to determine behavior, guide methods to correct neighborhoods

Software notes

Software

Matlab:

- fminbnd
 - For function of 1 variable with bound constraints
 - Based on golden section & parabolic interpolation
 - f(x) doesn't need to be defined at endpoints
- fminsearch
 - Simplex method (i.e., no derivative needed)
- Optimization Toolbox (available free @ Princeton)
- meshgrid
- surf
- Excel: Solver