COS 323: Computing for the

Physical and Social Sciences

COS 323

People:
Szymon Rusinkiewicz
Sandra Batista

Victoria Yao

Course webpage:

http://www.cs.princeton.edu/cos323

What’s This Course About?

Numerical Algorithms
Analysis of Data

Simulation

— Learn through applications

Scientitic Computing

Computers, from their invention until the 70s/80s,
were used mostly to solve problems
— Before “personal” computers (!)

— Users were scientists: producers of numerical “codes”
rather than consumers of “applications”

¢ " w

o 2 a I T |
. R X I e

o B
B]

Betty Jean Jennings and Fran Bilas with ENIAC | —
first general-purpose electronic computer

Stanistaw Ulam with MANIAC | — about 10* ops/sec

from SIAM News, Volume 33, Number 4

The Best of the 20th Century: Editors Name Top 10 Algorithms

By Barry A. Cipra

Algos is the Greek word for pain. Algor is Latin, to be cold. Neither is the root for algorithm, which stems instead from al-
Khwarizmi, the name of the ninth-century Arab scholar whose book al-jabr wa | mugabalal devolved into today’s high school
algebra textbooks. Al-Khwarizmi stressed the importance of methodical procedures for solving problems. Were he around today,
he'd no doubt be impressed by the advances in his eponymous approach.

Some of the very best algorithms of the computer age are highlighted in the January/February 2000 issue of Computing in Science
& Engineering, a joint publication of the American Institute of Physics and the IEEE Computer Society. Guest editors Jack Don-garra of the
University of Tennessee and Oak Ridge National Laboratory and Fran-cis Sullivan of the Center for Comput-ing Sciences at the Institute for
Defense Analyses put togeth-er a list they call the “Top Ten Algorthms of the Century.”

“We tried to assemble the 10 al-gorithms with the greatest influence on the development and practice of science and engineering
in the 20th century,” Dongarra and Sullivan write. As with any top-10 list, their selections—and non-selections—are bound to be
controversial, they acknowledge. When it comes to picking the algorithmic best, there seems to be no best algorithm.

Without further ado, here’s the CiSE top-10list, in chronological order. (Dates and names associated with the algorithms should be read
as first-order approximations. Most algorithms take shape over time. with many contributors.)

1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis
algorithm, also known as the Monte Carlo method.

The Metropolis algorithm aims to obtain approximate solutions to numerical problems with unmanageably many degrees of freedom
and to combinatorial problems of factorial size, by mimicking a random process. Given the digital computer’s reputation for
deterministic calculation, it’s fitting that one of its earliest applications was the generation of random numbers.

1947: George Dantzig, at the RAND Corporation, creates the simplex methed for linear programming.
In terms of widespread application, Dantzig’s algorithm is one of the most successful of all time: Linear
programming dominates the world of industry, where economic survival depends on the ability to optimize
within budgetary and other constraints. (Of course, the “real” problems of industry are often nonlinear; the use
of linear programming is sometimes dictated by the computational budget.) The simplex method is an elegant
way of arriving at optimal answers. Although theoretically susceptible to exponential delays, the algorithm
in practice is highly efficient—which in itself says something interesting about the nature of computation.

In terms of wide-
spread use, George X X . . .
Dantzig's simplex 1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis
methadisamong the at the National Bureau of Standards, initiate the development of Krylov subspace iteration method

maost successful al-

: ' These algorithms address the seemingly simple task of solving equations of the form Ax = h. The catch,
gorithms of all time. :

of course, is that 4 is a huge » > » matrix, so that the algebraic answer x = b/4 is not so easy to compute.
(Indeed, matrix “division™ is not a particularly useful concept.) Iterative methods—such as solving equations of
theformAx, ., = Ky, + b — Ax;withasimpler matrix & that’s ideally “close™ to 4—lead to the study of Krylov subspaces, Named
for the Russian mathematician Nikolai Krylov, Krylov subspaces are spanned by powers of a matrix applied to an initial
“remainder” vectorr, = b — Ax,. Lanczos found a nifty way to generate an orthogonal basis for such a subspace when the matrix
is symmetric. Hestenes and Stiefel proposed an even niftier method, known as the conjugate gradient method, for systems that are
both symmetric and positive definite. Over the last 50 years, numerous researchers have improved and extended these algorithms.
The current suite includes techniques for non-symmetric systems, with acronyms like GMRES and Bi-CGSTAB. (GMRES and
Bi-CGSTAB premiered in SFAM Jowrnal on Scientific and Statistical Computing, in 1986 and 1992,
respectively.)

1951: Alston Householder of Oak Ridge National Laboratory formalizes the decompositional approach
to matrix computations.

The ability to factor matrices into triangular, diagonal, orthogonal, and other special forms has turned
out to be extremely useful. The decompositional approach has enabled software developers to produce
flexible and efficient matrix packages. It also facilitates the analysis of rounding errors, one of the hig
bugbears of numerical linear algebra. (In 1961, James Wilkinson of the National Physical Laboratory in
London published a seminal paper in the Jowrnal of the ACM, titled “Error Analysis of Direct Methods
of Matrix Inversion,” based on the LU decomposition of a matrix as a product of lower and upper
triangular factors.)

Alston Householder

1957z John Backus leads a team at IBM in developing the Fortran optimizing compiler.
The creation of Fortran may rank as the single most important event in the history of computer programming: Finally, scientists

8 out of the top 10
algorithms of the
20t™ century are
numerical in nature

(we’ll cover 6 of them)

Y7TOHOLOW

A
- .) Hurricane Irene Models

hamweather.com

B nNHC cFs M Bamm I UKMET cmc B oFoL B NOGAPS
New"r’qu{}iw

-_"Fiféhmnnd

Atl::rlta o 2
Dﬂlhs af‘ Bermuda
i
iy

Adstin New Iberia | Panama City

L]
|
Port OConnor - . ‘|\
L L]
i

.

i
. Brownsville 1'\.\1\\
Fe] - '
. Y :
‘L Pesca ;

{Cﬂbﬂ Rojo Cabo San Antonio

Cam pec he

Veracruz Grrand E}ayrmnn

anejo s L. ° Belize City e Antigua/Barbuda
. Salina Gruz ==
St “P. Cabezas
Srp?::lfe el . Barbados

Mon Aug 22 2011 07:14 PMEDT| porranauilis Tobago

Today's Recommendations For You

{If you're nat Dwight K Schrute, click here.)

Here's a daily sample of items recommended for you. Click here to see all recommendations.

@

Guard Alaska™ Bear
Defense Spray
|| r:-. e s]

Fix this recommendation

Pickled Beets, Sliced
by Barry Farm

fririrdes [+ (8) $35.00 friciirr (v (1) $4.49
Fix this recommendation

Battlestar Galactica

- Season One
Wiy [v] (553) $34.99 W

Fix this recommendation

Page 1 of 44

Reebok 65cm Stability
Ball by Reebok
| (B) $18.78

Fix this recommendation

Some challenging but important &

common problems...

Root finding

. E.g., estimate molal volume

of a gas at a given pressure &
temperature using van der
Waals:

(p + a/v?)(v-b) = RT

Solving systems of linear equations

e.g., determine the current at
each point in an electrical
circuit, using Kirchoff’s rule
and Ohm'’s law.

Optimization

E.g., design the cheapest
wastewater treatment given
geography, pollution patterns,
and environmental
regulations.

Integration

/

E.g., compute the work
performed in a mechanical
system given a variable force

How do we solve these problems?

Numerical Analysis

Algorithms for solving numerical problems
— Calculus, algebra, data analysis, etc.

— Used even if answer is not simple/elegant:
“math in the real world”

Analyze/design algorithms based on:
— Running time, memory usage
(both asymptotic and constant factors)

— Applicability, stability, and accuracy

Why Is This Hard/Interesting?

“Numbers” in computers # numbers in math

— Limited precision and range

Algorithms sometimes don’t give right answer
— Iterative, randomized, approximate

— Unstable

Tradeoffs in accuracy, stability, and running time

Numbers in Computers

and their consequences

Numbers in Computers

“Integers”
— Implemented in hardware: fast

— Mostly sane, except for limited range

Floating point
— Implemented in most hardware

— Much larger range
(e.g. —231-.. 231 for integers, vs. —2127... 2127 for FP)

— Lower precision (e.g. 7 digits vs. 9)

— “Relative” precision: actual accuracy depends on size

Floating Point Numbers

Like scientific notation: e.g., c is
2.99792458 x 10% m/s

This has the form
(multiplier) x (base)Powen

In the computer,
— Multiplier is called mantissa
— Base is almost always 2

— Power is called exponent

Modern Floating Point Formats

Almost all computers use IEEE 754 standard
“Single precision”:

— 24-bit mantissa, base = 2, 8-bit exponent, 1 bit sign
— All fits into 32 bits (!) — mantissa has implicit leading 1
“Double precision”:

— 53-bit mantissa, base = 2, 11-bit exponent, 1 bit sign
— All fits into 64 bits

Sometimes also have “extended formats”

Other Number Representations

Fixed point
— Absolute accuracy doesn’t vary with magnitude
— Represent fractions to a fixed precision

— Not supported directly in hardware, but can hack it

“Infinite precision”
— Integers or rationals allocated dynamically
— Can grow up to available memory

— No direct support in hardware, but libraries available

Consequences of Floating Point

“Machine epsilon”: smallest positive number you
can add to 1.0 and get something other than 1.0
For single precision: & = 10~/

— No such number as 1.000000001

— Rule of thumb: “almost 7 digits of precision”

For double: ¢ =2 x 10-16

— Rule of thumb: “not quite 16 digits of precision”

These are all relative numbers

So What?

Simple example: add '/, to itself 10 times

Yikes!

Result: /1 + g+ ... =1

Reason: 0.1 can't be represented exactly in
pinary floating point

— Like /5 in decimal

Rule of thumb: comparing floating point
numbers for equality is always wrong

More Subtle Problem

Using quadratic formula
—b + Vb2 — 4ac
X =
2a
to solve x> —9999x + 1 =0
— Only 4 digits: single precision should be OK, right?

Correct answers: 0.0001... and 9998.999...

Actual answers in single precision: 0 and 9999
— First answer is 100% off!
— Total cancellation in numerator because b? >> 4ac

Accuracy

error is inevitable

Catalog of -

HITOTS

Inherent error in data or model

— “Garbage in, garbage out”

Approximation errors in algorithm

— Discretization error — e.g., too-big steps for derivative

— Truncation error — e.g., too

few terms of Taylor series

— Convergence error — stopping iteration too early

— Statistical error — too few random samples

Roundoff error due to floating-point “numbers”

Error Tradeott Example —

Computing Derivative

error

fx+h)—f(x)
h

HOE

10*15 . L . 1 . 1 . ! . 1 . 1 . 1 .
10 10 10 10 10°° 10 10 10 10
step size

Other Considerations of Problem

Formulation & Algorithm

Sensitivity & conditioning, stability & accuracy

Well-Posedness and Sensitivity

Problem is well-posed if solution
— exists
— IS unique

— depends continuously on problem data

Otherwise, problem is ill-posed

Solution may still be sensitive to input data

— lll-conditioned: relative change in solution
much larger than that in input data

Sensitivity & Conditioning

Some problems propagate error in bad ways

— e.g., y = tan(x) sensitive to small changes in x near /2

Small error in input — huge error in solution:
ill-conditioned

Well-conditioned problems may have
ill-conditioned inverses, and vice versa

— e.g., y = atan(x)

Stability & Accuracy

A stable algorithm introduces “only a little”
computational error
— Solution is an exact to solution to a “nearby” problem

— Computational error is indistinguishable from a
small data error

An accurate algorithm produces a solution that is
close to the true solution

stable algorithm + well-conditioned problem
— accurate solution

Running time

Running Time

Depending on algorithm, we'll look at:

— Asymptotic analysis for noniterative algorithms
(e.g., most methods for inverting an nxn matrix
require time proportional to n?)

— Convergence order for iterative approximate algorithms
(e.g., an answer to precision § might require
iterations proportional to 1/ or 1/6%)

Course Overview

Basic Techniques

root finding
optimization
linear systems
Integration

ODEs, PDEs

Plus...

frequency

Signal Analysis & Signal Processing

nos o

SPECTROGRAM, R =128
T T= T

iy

o] '-\

-

| m

™

T
(|

[Matusik & McMillan]

Data Analysis and Model Fitting

Average happiness

I I I I
0 50,000 100,000 150,000 200,000
Family income (2006%)

Note: 1972 to 2006. Sample size: 41,795. Each circle represents an income range of $2,000 (e.g.,
$10,001 to $12,000), in 2006%. Its diameter is proportional to the number of people in that range.

Source: My calculations from General Social Survey data.

imulation

(@ Zombie Infection Simulation - The Original - Mozilla Firefox
File Edit View History Bookmarks Tools Help

Zombie Infection Simulation v2.3 - The Original

Simulation Rules

Zombies are grey,

walkin

If a zombie finds a survivor standing di in front of it, it bites and inf;

Survivors are pink and run five times as fast as z

pa
Panicked survivors are bright
who has seen i i

Il nee

Links

The Zombie Infection Simulation was built with

in front of them, in wh

nks of the undead.

in front of them, they turn around and

it starts panici L. A panicked survivor

[
=)

[
3

ma
3

M
S

Population Values (1000's)
3

8

=

Simulation

“In summary, a zombie outbreak is likely to lead to the
collapse of civilization, unless it is dealt with quickly. [...]
As seen in the movies, it is imperative that zombies are
dealt with quickly, or else we are all in a great deal of
trouble. ”

— Munz et al., Infectious Disease Modelling Research
Progress, 2009

Visualization

Clarte Figurative ses petes sssioes anbommes 3e 8 ornie Fsise-doms Campague 2e < Russie 1812 1813,

Dessic pac L. Minazd, Duspectiune. CGenérall 2es Touts o1 bk w tekiaite
P s =t s, Lo 20 Ioverusdre 1869.
e seowibees 3%, boull dova. 2 ‘fu-qf-l o boties i taison d'om- willistie fmbmm i ifs gom_ 2e fonld ew teavets
e omes . L.b-r.aéu?:ublmw.n;wm;mwm e e - Lo 1-&.:1—4“99‘5, deessce fa n:!:mvili.rnm.: ﬁ:oacuu

e Mohilerw mi-wrdum_mﬁqmm&m)' 2 1"“’

Polotak

i commanas s Franie. (Gorts do Aol Faspessse:)
: s w R * .3
I j .
TABLEAU CRAPHIDUE dela 2 en s dit thermamétre de Réaumir au dessons de zemo
! 0 W @H st e irale 5.8
‘ Floie 24 8°° :
ﬁm’.ﬂ”’# [M rol N :
> 80" e 28 8 —2(le 4 5™ a5
— 280k - LT, 35 s
— 50" e 6 X"
gy ey

Ao r Ragmim, I Pas. T Maria 3963 Paris.

Course Information

Mechanics

5 programming assignments: 50%
— Typically more thought than coding
— MATLAB

— Analysis, writeup counts a lot!

2 in-class exams: 25%

— Short-answer, focusing on topics not covered in
programming assignments

Final project (in groups): 25%

To Do

Course webpage:

http://www.cs.princeton.edu/cos323

MATLAB:

— Install it now — instructions on webpage

— Engineering school tutorial, or we'll do our own

Assignment O:

— Available on course web page, due Tuesday Sep 24

Sign up for Piazza

	COS 323: Computing for the�Physical and Social Sciences
	COS 323
	What’s This Course About?
	Scientific Computing
	
	
	
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Some challenging but important & common problems…
	Root finding
	Solving systems of linear equations
	Optimization
	Integration
	How do we solve these problems?
	Numerical Analysis
	Why Is This Hard/Interesting?
	Numbers in Computers
	Numbers in Computers
	Floating Point Numbers
	Modern Floating Point Formats
	Other Number Representations
	Consequences of Floating Point
	So What?
	Yikes!
	More Subtle Problem
	Accuracy
	Catalog of Errors
	Error Tradeoff Example –�Computing Derivative
	Other Considerations of Problem Formulation & Algorithm
	Well-Posedness and Sensitivity
	Sensitivity & Conditioning
	Stability & Accuracy
	Running time
	Running Time
	Course Overview
	Basic Techniques
	Signal Analysis & Signal Processing
	Data Analysis and Model Fitting
	Simulation
	Simulation
	Visualization
	Course Information
	Mechanics
	To Do

