

Project 3: Preemptive Scheduler
COS 318
Fall 2013

Project 3 Schedule

● Design Review
– Monday, Oct 21

– 10-min time slots from 10am to 7:00pm

● Due date: Sun Nov 3, 11:55pm

General Suggestions

● Project is divided into 3 phases:
– Timer interrupt/preemptive scheduling

– Blocking sleep

– Synchronization primitives

● Get each phase working before starting on the next
● Use provided test programs to test each component
● Start as early as you can, and get as much done as

possible by the design review

Project 3 Overview

● Implement preemptive scheduling:
– Respond to timer interrupt: entry.S

– Blocking sleep: scheduler.c

● Implement synchronization primitives: sync.c,
sync.h
– What are the properties of condition variables,

semaphores, and barriers?

– How do you implement them race condition-free?

● Care: turn interrupts on/off properly
– Safety and liveness properties

Test Programs

● 5 test programs provided for your convenience
● Preemptive scheduling:

– test_regs and test_preempt

● Blocking sleep:
– test_blocksleep

● Synchronization primitives:
– test_barrier, test_all (tests everything, really)

● Feel free to create your own test programs!

Preemptive Scheduling

● Round-robin fashion
● Tasks are preempted via timer interrupt IRQ0
● Have time slice to determine when to preempt

(time_elapsed variable in scheduler.c)
● IRQ0 increments the time slice in each call

Preemptive Scheduling

● What is the workflow of one preemption cycle?
– Have one task running, others in queue waiting

– Save the current task before preempting

– Change the current running task to the next one in
the queue

Blocking Sleep

● Enables preemptive scheduling
● Maintain a wait queue for sleeping tasks
● When do you need to wake up the task?

– Each task has a deadline

– Can use time_elapsed to do the timing

– Wake-up should happen as soon as possible

● Must handle the case when all tasks are
sleeping

Synchronization Primitives

● Implement condition variables, semaphores,
barriers

● What are the properties of each primitive?
– Data structure

– Behavior

● Ensure that you are not introducing race
conditions

Review: Condition Variables

● Properties:
– Queue of threads that are waiting on condition to

become true

– Part of a monitor (locks are implemented for you)

● Two main operations:
– Wait: Block on a condition, release the mutex while

waiting

– Signal: Unblock since condition is true

● Broadcast operation notifies all waiting threads
● Refer to pp.13, 23 of 10/3 lecture

Review: Semaphores

● Properties:
– Control access to a common resource

– Value keeps track of the number of units of a
resource that are currently available

– Queue of processes that are waiting

● Two main operations:
– Down: Decrement value, block the process

– Up: Increment value, unblock waiting process

● Refer to p. 7-8 of 10/3 lecture

Review: Barriers

● Properties:
– Location in code at which any thread/proc must stop

until all other threads/procs reach this point

– Keep track of number of threads at barrier, and
number of threads running

– Maintain queue of processes that are waiting

● Main operation:
– Wait: If there are still running procs/threads, block

the proc/thread. Otherwise, unblock all.

● Refer to pp. 26-28 of 10/3 lecture

Warm-Up Exercise

● Analyze implementations of synchronization
primitive operations.

● Are these implementations safe?
– Do they prevent race conditions in the kernel?

● Do these implementations preserve liveness?
– Are the interrupts on most of the time?

● Race condition: arises when the order of
execution of an operation by several different
processes/threads results in unexpected
behavior.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

