
COS 318: Operating Systems

Virtual Machine Monitors

Kai Li and Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall13/cos318/

Introduction

u Have been around since 1960’s on mainframes
l  used for multitasking
l  Good example – VM/370

u Have resurfaced on commodity platforms
l  Server Consolidation
l  Web Hosting centers
l  High-Performance Compute Clusters
l  Managed desktop / thin-client
l  Software development / kernel hacking

2

Goals
u Manageability

l  Ease maintenance, administration, provisioning, etc.

u Performance
l  Overhead of virtualization should be small

u  Power saving
l  Server consolidation

u  Isolation
l  Activity of one VM should not impact other active VMs
l  Data of one VM is inaccessible by another

u Scalability
l  Minimize cost per VM

3

Virtual Machine Monitor (VMM)

u  Resides as a layer below the operating system

u  Presents a hardware interface to an OS

u  Multiplexes resources between several virtual machines
(VMs)

u  Performance Isolates VMs from each other

4

VMM Types

5

Virtualization Styles

u  Fully virtualizing VMM
l  Virtual machine looks exactly like a physical machine
l  Run guest OS unchanged
l  VMM is transparent to the OS

u  Para- virtualizing VMM

l  Sacrifice transparency for better performance
l  VMM can provide idealized view of hardware
l  VMM can provide a “hypervisor API”
l  Guest OS is changed to cooperate with VMM

6

VMM Classification

7

Type I Type II

Fully-virtualized

Para-virtualized

VMware ESX VMware Workstation

User Mode Linux Xen

VMM Implementation

Should efficiently virtualize the hardware
u  Provide illusion of multiple machines
u  Retain control of the physical machine

Subsystems
u  Processor Virtualization
u  I/O virtualization
u  Memory Virtualization

8

Processor Virtualization

Popek and Goldberg (1974)
l  Sensitive instructions: only executed in kernel mode
l  Privileged instructions: trap when run in user mode
l  CPU architecture is virtualizable only if sensitive

instructions are subset of privileged instructions

l  When guest OS runs a sensitive instruction, must trap to

VMM so it maintains control

9

Example: System Call

Process Operating System VMM

1.System call: Trap to OS

2. Process trapped: call OS
trap handler (at reduced
privilege)

3. OS trap handler: Decode
trap and execute syscall;
When done: issue return-
frrom-trap

4. OS tried to return from
trap; do real return-from-trap

5. Resume execution (@PC
after trap)

10

x86 Processor Virtualization

u  x86 architecture is not fully virtualizable
l  Certain privileged instructions behave differently when

run in unprivileged mode
l  Certain unprivileged instructions can access privileged

state

u Techniques to address inability to virtualize x86
l  Replace non-virtualizable instructions with easily

virtualized ones statically (Paravirtualization)
l  Perform Binary Translation (Full Virtualization)

11

I/O Virtualization

u  Issue: lots of I/O devices
u Problem: Writing device drivers for all I/O device in

the VMM layer is not a feasible option
u  Insight: Device driver already written for popular

Operating Systems
u Solution: Present virtual I/O devices to guest VMs

and channel I/O requests to a trusted host VM
running popular OS

12

I/O Virtualization

13

VMM + Device Drivers VMM

Memory Virtualization

u  Traditional way is to have the VMM maintain a shadow of
the VM’s page table

u  The shadow page table controls which pages of machine
memory are assigned to a given VM

u  When guest OS updates its page table, VMM updates
the shadow

14

VMware ESX Server

u  Type I VMM - Runs on bare hardware

u  Full-virtualized – Legacy OS can run unmodified on top of

ESX server

u  Fully controls hardware resources and provides good
performance

15

ESX Server – CPU Virtualization

u Most user code executes in Direct Execution
mode; near native performance

u Uses runtime Binary Translation for x86
virtualization
l  Privileged mode code is run under control of a Binary

Translator, which emulates problematic instructions
l  Fast compared to other binary translators as source and

destination instruction sets are nearly identical

16

ESX Server – Memory Virtualization
u  Maintains shadow page tables with virtual to machine

address mappings.
u  Shadow page tables are used by the physical processor
u  ESX maintains the pmap data structure for each VM with
“physical” to machine address mappings

u  ESX can easily remap a machine page

17

ESX Server – Memory Mgmt
u  Page reclamation – Ballooning technique

l  Reclaims memory from other VMs when memory is
overcommitted

u  Page sharing – Content based sharing
l  Eliminates redundancy and saves memory pages when VMs

use same operating system and applications

18

ESX Server- Ballooning

19

ESX Server – Page Sharing

20

Real World Page Sharing

21

ESX Server – I/O Virtualization

u  Has highly optimized storage subsystem for networking
and storage devices
l  Directly integrated into the VMM
l  Uses device drivers from the Linux kernel to talk directly to the

device
u  Low performance devices are channeled to special
“host” VM, which runs a full Linux OS

22

I/O Virtualization

23

VMM + Device Drivers VMM

VMware Workstation

u  Type II VMM - Runs on host operating system
u  Full-virtualized – Legacy OS can run unmodified on

top of VMware Workstation
u  Appears like a process to the Host OS

24

Workstation - Virtualization

u  CPU Virtualization and Memory Virtualization
l  Uses Similar Techniques as the VMware ESX server

u  I/O Virtualization
l  Workstation relies on the Host OS for satisfying I/O

requests
l  I/O incurs huge overhead as it has to switch to the Host

OS on every IN/OUT instruction.
l  E.g., Virtual disk maps to a file in Host OS

25

Workstation – Virtualize NIC

26

Xen

u  Type I VMM
u  Para-virtualized
u  Open-source
u  Designed to run about 100 virtual machines on a single

machine

27

Xen – CPU Virtualization

u  Privileged instructions are para-virtualized by requiring
them to be validated and executed with Xen

u  Processor Rings
l  Guest applications run in Ring 3
l  Guest OS runs in Ring 1
l  Xen runs in Ring 0

28

Xen – Memory Virtualization(1)

u  Initial memory allocation is specified and memory is
statically partitioned

u  A maximum allowable reservation is also specified.
u  Balloon driver technique similar to ESX server used to

reclaim pages

29

Xen – Memory Virtualization(2)

u  Guest OS is responsible for allocating and managing
hardware page table

u  Xen involvement is limited to ensure safety and isolation
u  Xen exists in the top 64 MB section at the top of every

address space to avoid TLB flushes when entering and
leaving the VMM

30

Xen – I/O Virtualization

u  Xen exposes a set of clean and simple device
abstractions

u  I/O data is transferred to and from each domain via Xen,
using shared memory, asynchronous buffer descriptor
rings

u  Xen supports lightweight event delivery mechanism used
for sending asynchronous notifications to domains

31

Summary

u  Classifying Virtual Machine Monitors
l  Type I vs. type II
l  Full vs. para-virtualization

u  Processor virtualization
u  Memory virtualization
u  I/O virtualization

32

