
COS 318: Operating Systems

Virtual Memory and Address
Translation

Kai Li and Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall13/cos318/

2

Today’s Topics

u  Virtual Memory
l  Virtualization
l  Protection

u  Address Translation
l  Base and bound
l  Segmentation
l  Paging
l  Translation look-ahead buffer

u  Midterm results
u  Repair working groups

3

The Big Picture

u DRAM is fast, but relatively expensive
u Disk is inexpensive, but slow

l  100x less expensive
l  100,000x longer latency
l  1000x less bandwidth

u Our goals
l  Run programs as efficiently as possible
l  Make the system as safe as possible

CPU

Memory

Disk

4

Issues

u  Many processes
l  The more processes a system can handle, the better

u  Address space size
l  Many small processes whose total size may exceed memory
l  Even one process may exceed the physical memory size

u  Protection
l  A user process should not crash the system
l  A user process should not do bad things to other processes

5

Consider A Simple System

u  Only physical memory
l  Applications use physical

memory directly
u  Run three processes

l  Email, browsesr, gcc
u  What if

l  gcc has an address error?
l  browser writes at x7050?
l  email needs to expand?
l  browser needs more

memory than is on the
machine?

OS

email

browser

gcc

Free x0000

x2500

x5000

x7000

x9000

6

Protection Issue

u  Errors in one process should not affect others
u  For each process, check each load and store instruction

to allow only legal memory references

CPU Check Physical
memory

address

error

data

gcc

7

Expansion or Transparency Issue

u  A process should be able to run regardless of its
physical location or the physical memory size

u  Give each process a large, static “fake” address space
u  As a process runs, relocate each load and store to its

actual memory

CPU Check &
relocate

Physical
memory

address

data

email

8

Virtual Memory

u  Flexible
l  Processes can move in memory as they execute, partially in

memory and partially on disk
u  Simple

l  Make applications very simple in terms of memory accesses
u  Efficient

l  20/80 rule: 20% of memory gets 80% of references
l  Keep the 20% in physical memory

u  Design issues
l  How is protection enforced?
l  How are processes relocated?
l  How is memory partitioned?

9

Address Mapping and Granularity
u Must have some “mapping” mechanism

l  Virtual addresses map to
DRAM physical addresses or disk addresses

u Mapping must have some granularity
l  Granularity determines flexibility
l  Finer granularity requires more mapping information

u Extremes
l  Any byte to any byte: mapping equals program size
l  Map whole segments: larger segments problematic

10

Generic Address Translation

u  Memory Management Unit
(MMU) translates virtual
address into physical address
for each load and store

u  Software (privileged) controls
the translation

u  CPU view
l  Virtual addresses

u  Each process has its own
memory space [0, high]
l  Address space

u  Memory or I/O device view
l  Physical addresses

CPU

MMU

Physical
memory

I/O
device

Virtual address

Physical address

11

Goals of Translation

u  Implicit translation for each
memory reference

u  A hit should be very fast
u  Trigger an exception on a

miss
u  Protected from user’s faults

Registers

L1

Memory

Disk

2-3x

100-300x

20M-30Mx

Paging

L2-L3 10-20x

12

Base and Bound
u  Built in Cray-1
u  Each process has a pair

(base, bound)
u  Protection

l  A process can only access
physical memory in
[base, base+bound]

u  On a context switch
l  Save/restore base, bound

registers
u  Pros

l  Simple
l  Flat and no paging

u  Cons
l  Fragmentation
l  Hard to share
l  Difficult to use disks

virtual address

base

bound

error

+

>

physical address

13

Segmentation
u  Each process has a table of

(seg, size)
u  Treats (seg, size) has a

fine-grained (base, bound)
u  Protection

l  Each entry has
(nil, read, write, exec)

u  On a context switch
l  Save/restore the table and a

pointer to the table in kernel
memory

u  Pros
l  Efficient
l  Easy to share

u  Cons
l  Complex management
l  Fragmentation within a

segment
physical address

+

segment offset

Virtual address

seg size

. . .

>
error

14

Paging

u  Use a fixed size unit called
page instead of segment

u  Use a page table to
translate

u  Various bits in each entry
u  Context switch

l  Similar to segmentation
u  What should page size be?
u  Pros

l  Simple allocation
l  Easy to share

u  Cons
l  Big table
l  How to deal with holes?

VPage # offset

Virtual address

. . .

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

15

How Many PTEs Do We Need?

u  Assume 4KB page
l  Equals “low order” 12 bits

u  Worst case for 32-bit address machine
l  # of processes × 220

l  220 PTEs per page table (~4Mbytes), but there might be 10K
processes. They won’t fit in memory together

u  What about 64-bit address machine?
l  # of processes × 252
l  A page table cannot fit in a disk (252 PTEs = 16PBytes)!

16

Segmentation with Paging

VPage # offset

Virtual address

. . .

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

. . .

Vseg #

error

17

Multiple-Level Page Tables

Directory . . .

pte

. . .

. . .

. . .

dir table offset
Virtual address

What does this buy us?

Interlude

u  Be wary of complexity!
l  Implement the least complex system that does the job

u  Examples
l  Disk space abundant -> file system doesn’t need to work hard

to save a few bytes
l  Fast processors -> write clean, easily understood code rather

than CPU-optimized assembly
l  Don’t prematurely optimize

18

“Perfection is finally attained not when there is no longer
anything to add, but when there is no longer anything to
take away.”
 -- Antoine de Saint-Exupery

19

Inverted Page Tables

u  Main idea
l  One PTE for each

physical page frame
l  Hash (Vpage, pid) to

Ppage#
u  Pros

l  Small page table for
large address space

u  Cons
l  Lookup is difficult
l  Overhead of managing

hash chains, etc

pid vpage offset

pid vpage

0

k

n-1

k offset

Virtual
address

Physical
address

Inverted page table

20

Virtual-To-Physical Lookups

u Programs only know virtual addresses
l  Each program or process starts from 0 to high address

u Each virtual address must be translated
l  May involve walking through the hierarchical page table
l  Since the page table stored in memory, a program memory

access may requires several actual memory accesses
u Solution

l  Cache “active” part of page table in a very fast memory

21

Translation Look-aside Buffer (TLB)

offset

Virtual address

. . .

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real
page
table

VPage#
VPage#

VPage#

22

Bits in a TLB Entry

u  Common (necessary) bits
l  Virtual page number: match with the virtual address
l  Physical page number: translated address
l  Valid
l  Access bits: kernel and user (nil, read, write)

u  Optional (useful) bits
l  Process tag
l  Reference
l  Modify
l  Cacheable

23

Hardware-Controlled TLB

u  On a TLB miss
l  Hardware loads the PTE into the TLB

•  Write back and replace an entry if there is no free entry
l  Generate a fault if the page containing the PTE is invalid
l  VM software performs fault handling
l  Restart the CPU

u  On a TLB hit, hardware checks the valid bit
l  If valid, pointer to page frame in memory
l  If invalid, treat as TLB miss

24

Software-Controlled TLB

u  On a miss in TLB
l  Write back if there is no free entry
l  Check if the page containing the PTE is in memory
l  If not, perform page fault handling
l  Load the PTE into the TLB
l  Restart the faulting instruction

u  On a hit in TLB, the hardware checks valid bit
l  If valid, pointer to page frame in memory
l  If invalid, treat as TLB miss

25

Hardware vs. Software Controlled

u  Hardware approach
l  Efficient
l  Inflexible
l  Need more space for page table

u  Software approach
l  Flexible
l  Software can do mappings by hashing

•  PP# → (Pid, VP#)
•  (Pid, VP#) → PP#

l  Can deal with large virtual address space

26

Cache vs. TLB

u  Similarities
l  Cache a portion of memory
l  Write back on a miss

u  Differences
l  Associativity
l  Consistency

Vpage # offset

TLB

ppage # offset

Memory

Hit

Miss

Cache

Address Data

Hit

Memory

Miss

27

TLB Related Issues

u  What TLB entry to be replaced?
l  Random
l  Pseudo LRU

u  What happens on a context switch?
l  Process tag: change TLB registers and process register
l  No process tag: Invalidate the entire TLB contents

u  What happens when changing a page table entry?
l  Change the entry in memory
l  Invalidate the TLB entry

28

Consistency Issues

u  “Snoopy” cache protocols (hardware)
l  Maintain consistency with DRAM, even when DMA happens

u  Consistency between DRAM and TLBs (software)
l  You need to flush related TLBs whenever changing a page

table entry in memory
u  TLB “shoot-down”

l  On multiprocessors, when you modify a page table entry, you
need to flush all related TLB entries on all processors

29

Summary

u  Virtual Memory
l  Virtualization makes software development easier and

enables memory resource utilization better
l  Separate address spaces provide protection and isolate faults

u  Address translation
l  Base and bound: very simple but limited
l  Segmentation: useful but complex

u  Paging
l  TLB: fast translation for paging
l  VM needs to take care of TLB consistency issues

u  Regroup for projects 4 and 5

Midterm Results (Avg = 29.19)

30

0

5

10

15

20

25

30

35

40

Midterm Grading

u  Problem 1: Scott
u  Problem 2: Andy
u  Problem 3: Marcela
u  Problem 4: Marcela
u  Problem 5: Kai

u  Suggested solution online

31

