
COS 318: Operating Systems

Processes and Threads

Kai Li and Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall13/cos318

2

Today’s Topics

u  Concurrency
u  Processes
u  Threads

u  Reminder:
l  Hope you’re all busy implementing Project 1

Development Models

3

Read docs

Design

Implement

Debug

Read docs

Design

Implement

Debug

Linear Iterative

Vs.

Development Models

4

Read docs

Design

Implement

Debug

Read docs

Design

Implement

Debug

Linear Iterative

Vs.

5

Concurrency and Process

u  Concurrency
l  Hundreds of jobs going on in a system
l  CPU is shared, as are I/O devices
l  Each job would like to have its own computer

u  Process concurrency
l  Decompose complex problems into simple ones
l  Make each simple one a process
l  Deal with one at a time
l  Each process feels like having its own computer

u  Example: gcc (via “gcc –pipe –v”) launches
l  /usr/libexec/cpp | /usr/libexec/cc1 | /usr/libexec/as | /usr/libexec/elf/ld

l  Each instance is a process

6

Process Parallelism

u  Virtualization
l  Each process run for a while
l  Make a CPU into many
l  Each virtually has its own CPU

u  I/O parallelism
l  CPU job overlaps with I/O
l  Each runs almost as fast as if it

has its own computer
l  Reduce total completion time

u  CPU parallelism
l  Multiple CPUs (such as SMP)
l  Processes running in parallel
l  Speedup

emacs emacs

gcc

CPU CPU I/O

CPU I/O
3s 2s 3s

3s 2s

9s

CPU
3s

CPU
3s

3s

7

More on Process Parallelism

u  Process parallelism is common in real life
l  Each sales person sell $1M annually
l  Hire 100 sales people to generate $100M revenue

u  Speedup
l  Ideal speedup is factor of N
l  Reality: bottlenecks + coordination overhead

u  Question
l  Can you speedup by working with a partner?
l  Can you speedup by working with 20 partners?
l  Can you get super-linear (more than a factor of N) speedup?

8

Simplest Process

u  Sequential execution
l  No concurrency inside a process
l  Everything happens sequentially
l  Some coordination may be required

u  Process state
l  Registers
l  Main memory
l  I/O devices

•  File system
•  Communication ports

l  …

9

Program and Process

main()
{
...
foo()
...
}

bar()
{
 ...
}

 Program

main()
{
...
foo()
...
}

bar()
{
 ...
}

 Process

heap

stack

registers
PC

10

Process vs. Program

u  Process > program
l  Program is just part of process state
l  Example: many users can run the same program

•  Each process has its own address space, i.e., even though
program has single set of variable names, each process will
have different values

u  Process < program
l  A program can invoke more than one process
l  Example: Fork off processes

11

Process Control Block (PCB)
u  Process management info

l  State
•  Ready: ready to run
•  Running: currently running
•  Blocked: waiting for resources

l  Registers, EFLAGS, and other CPU state
l  Stack, code and data segment
l  Parents, etc

u  Memory management info
l  Segments, page table, stats, etc

u  I/O and file management
l  Communication ports, directories, file descriptors, etc.

u  How OS takes care of processes
l  Resource allocation and process state transition

12

Primitives of Processes

u  Creation and termination
l  Exec, Fork, Wait, Kill

u  Signals
l  Action, Return, Handler

u  Operations
l  Block, Yield

u  Synchronization
l  We will talk about this later

13

Make A Process

u  Creation
l  Load code and data into memory
l  Create an empty call stack
l  Initialize state to same as after a process switch
l  Make the process ready to run

u  Clone
l  Stop current process and save state
l  Make copy of current code, data, stack and OS state
l  Make the process ready to run

14

Example: Unix

u  How to make processes:
l  fork clones a process
l  exec overlays the current process

pid = fork()
if (pid == 0) {
 /* child process */

 exec(“foo”); /* does not return */
} else {

 /* parent */
 wait(pid); /* wait for child to die */

}

Fork and Exec in Unix

15

pid = fork()
if (pid == 0)
 exec(“foo”);
else
 wait(pid);

pid = fork()
if (pid == 0)
 exec(“foo”);
else
 wait(pid);

pid = fork()
if (pid == 0)
 exec(“foo”);
else
 wait(pid);

Main()
{
…
}

foo:

Wait

More on Fork

u  Parent process has a
PCB and an address
space

u  Create and initialize PCB
u  Create an address space
u  Copy the contents of the

parent address space to
the new address space

u  Inherit the execution
context of the parent

u  New process is ready

16

Parent
address
space

New
address
space

PCB PCB

17

Process Context Switch

u  Save a context (everything that a process may damage)
l  All registers (general purpose and floating point)
l  All co-processor state
l  Save all memory to disk?
l  What about cache and TLB stuff?

u  Start a context
l  Does the reverse

u  Challenge
l  OS code must save state without changing any state
l  How to run without touching any registers?

•  CISC machines have a special instruction to save and restore all
registers on stack

•  RISC: reserve registers for kernel or have way to carefully save
one and then continue

18

Process State Transition

Running

Blocked Ready

Resource becomes
available

Create

Terminate

19

Today’s Topics

u  Concurrency
u  Processes
u  Threads

Interlude

20

I think there is a profound and enduring beauty in
simplicity, in clarity, in efficiency. True simplicity is
derived from so much more than just the absence
of clutter and ornamentation. It’s about bringing
order to complexity.

 -- Sir Jony Ive

From Last Time…

u  Q: It says on the slide that Mac OS X is a microkernel,
and microkernels are supposed to be more robust, so
why does my Mac OS X crash?

u  Microkernels can still crash
l  Bugs in the kernel
l  Cannot recover from a critical OS service crashing

u  Mac OS X uses XNU “hybrid” kernel: Mach + BSD
l  Many claim it’s not a true microkernel

21

22

Threads

u  Thread
l  A sequential execution stream within a process (also called

lightweight process)
l  Threads in a process share the same address space

u  Thread concurrency
l  Easier to program I/O overlapping with threads than signals
l  Responsive user interface
l  Run some program activities “in the background”
l  Multiple CPUs sharing the same memory

23

Thread Control Block (TCB)

l  State
•  Ready: ready to run
•  Running: currently running
•  Blocked: waiting for resources

l  Registers
l  Status (EFLAGS)
l  Program counter (EIP)
l  Stack
l  Code

24

Typical Thread API

u Creation
l  Create, Join, Exit

u Mutual exclusion
l  Acquire (lock), Release (unlock)

u Condition variables
l  Wait, Signal, Broadcast

25

Revisit Process

u  Process
l  Threads
l  Address space
l  Environment for the threads to run on OS (open files, etc)

u  Simplest process has 1 thread

Process

26

Thread Context Switch

u  Save a context (everything that a thread may damage)
l  All registers (general purpose and floating point)
l  All co-processor state
l  Need to save stack?
l  What about cache and TLB stuff?

u  Start a context
l  Does the reverse

u  May trigger a process context switch

27

Procedure Call

u  Caller or callee save some context (same stack)
u  Caller saved example:

save active caller registers
call foo

restore caller regs

foo() {
 do stuff

}

28

Threads vs. Procedures

u  Threads may resume out of order
l  Cannot use LIFO stack to save state
l  Each thread has its own stack

u  Threads switch less often
l  Do not partition registers
l  Each thread “has” its own CPU

u  Threads can be asynchronous
l  Procedure call can use compiler to save state synchronously
l  Threads can run asynchronously

u  Multiple threads
l  Multiple threads can run on multiple CPUs in parallel
l  Procedure calls are sequential

29

Process vs. Threads

u  Address space
l  Processes do not usually share memory
l  Process context switch changes page table and other memory

mechanisms
l  Threads in a process share the entire address space

u  Privileges
l  Processes have their own privileges (file accesses, e.g.)
l  Threads in a process share all privileges

u  Question
l  Do you really want to share the “entire” address space?

30

Real Operating Systems

u  One or many address spaces
u  One or many threads per address space

1 address space Many address spaces

1 thread per
address space

MSDOS
Macintosh

Traditional Unix

Many threads per
address spaces

Embedded OS,
Pilot

VMS, Mach (OS-X), OS/2,
Windows NT/XP/Vista,
Solaris, HP-UX, Linux

31

Summary

u  Concurrency
l  CPU and I/O
l  Among applications
l  Within an application

u  Processes
l  Abstraction for application concurrency

u  Threads
l  Abstraction for concurrency within an application

